Equidistributed Sequence - Definition

Definition

A bounded sequence {s1, s2, s3, …} of real numbers is said to be equidistributed on an interval if for any subinterval of we have

(Here, the notation |{s1,…,sn }∩| denotes the number of elements, out of the first n elements of the sequence, that are between c and d.)

For example, if a sequence is equidistributed in, since the interval occupies 1/5 of the length of the interval, as n becomes large, the proportion of the first n members of the sequence which fall between 0.5 and 0.9 must approach 1/5. Loosely speaking, one could say that each member of the sequence is equally likely to fall anywhere in its range. However, this is not to say that {sn} is a sequence of random variables; rather, it is a determinate sequence of real numbers.

Read more about this topic:  Equidistributed Sequence

Famous quotes containing the word definition:

    Scientific method is the way to truth, but it affords, even in
    principle, no unique definition of truth. Any so-called pragmatic
    definition of truth is doomed to failure equally.
    Willard Van Orman Quine (b. 1908)

    It’s a rare parent who can see his or her child clearly and objectively. At a school board meeting I attended . . . the only definition of a gifted child on which everyone in the audience could agree was “mine.”
    Jane Adams (20th century)

    Perhaps the best definition of progress would be the continuing efforts of men and women to narrow the gap between the convenience of the powers that be and the unwritten charter.
    Nadine Gordimer (b. 1923)