Environmental Molecular Sciences Laboratory - Research

Research

Research at EMSL is focussed on gaining an understanding of the physics, chemistry and biology governing environmental processes starting at the molecular scale and propagating to larger scales. EMSL’s research focus has been defined into three science themes.

  • Biological Interactions and Dynamics: Developing a quantitative, systems-level understanding of the dynamic network of proteins and molecules that drive cell responses and how groups of different cells interact to give rise to functional cell communities.
  • Geochemistry/Biogeochemistry and Subsurface Science: Studying molecular scale reaction mechanisms at the mineral-water, microbe-mineral, and fluid-fluid interfaces and understanding the effect of these mechanisms on the fate and transport of contaminants.
  • Science of Interfacial Phenomena: Developing an understanding and gaining control of atomic- and molecular-level structure–function relationships at interfaces that enable the optimization of interfacial properties, such as the control of catalytic activity and selectivity.

==Capabilities EMSL capabilities include:

  • Cell Isolation and Systems Analysis – isolates cells from complex populations or environmental samples for subsequent, integrated 'omics and imaging analyses. EMSL specializes in high-throughput genomics and proteomics studies, and electron and fluorescence microscopy characterization at high spatial and temporal resolutions.
  • Deposition and Microfabrication – unites instruments designed to tailor surfaces atom by atom. From deposition instruments that emphasize oxide films and interfaces to a microfabrication suite, EMSL has equipment to tailor surfaces, as diverse as single-crystal thin films or nanostructures, or create the microenvironments needed for direct experimentation at micron scales.
  • Mass Spectrometry – enables high-throughput, high-resolution analysis of complex mixtures. These resources are applied to scientific problems from proteomics studies to aerosol particle characterization, as well as fundamental studies of ion-surface collisions and preparatory mass spectrometry using ion soft-landing.
  • Microscopy – offers microscopy instruments, including electron microscopes, optical microscopes, scanning probe microscopes and computer-controlled microscopes for automated particle analysis. These tools are used to image sample types with nanoscale – and even atomic – resolution with applications to surface, environmental, biogeochemical, atmospheric and biological science.
  • Molecular Science Computing – provides an integrated production computing environment. Computing resources include:
  1. Chinook Supercomputer – The overall system has 74 TB of memory, 350 GB of local scratch disk per node, a 250 TB of global parallel file system, and a peak performance 163 teraflops.
  2. Molecular Science Software Suite – tools that enables scientists to understand chemical systems at the molecular level by coupling the power of computational chemistry techniques with existing massively parallel computing systems. The suite includes including NWChem, ECCE and ParSoft.
  3. Graphics and Visualization Lab – helps researchers visualize and analyze experimental and computational data sets.
  • NMR and EPR – nuclear magnetic resonance, or NMR, instruments with frequencies up to 900 MHz and an electron paramagnetic resonance, or EPR, spectrometer. EMSL staff members have developed probes and techniques to complement the lab’s collection of magnets.
  • Spectroscopy and Diffraction – allows users to study solid-, liquid- and gas-phase sample structure and composition with remarkable resolution. Ideal for integrated studies, spectrometers and diffractometers are coupled with EMSL's computational and modeling capabilities.
  • Subsurface Flow and Transport – allows the study of chemical reactions in natural materials with an emphasis on soil and subsurface systems. EMSL's approach to subsurface flow and transport studies integrates flow cells, analytical tools, tomographic imaging and predictive modeling capabilities to study subsurface phenomena.

EMSL facilities include a Quiet Wing that opened in early 2012 and a Radiochemistry Annex opening to the global user community in spring 2014.

  • Quiet Wing - EMSL’s Quiet Wing was designed to help accelerate science by allowing microscopy equipment to operate at optimal resolution. The wing’s design eliminates or reduces to a minimum the vibrations, acoustics and electromagnetics that can interfere with the resolution of ultra-sensitive scientific instrumentation. The facility and its collection of microscopy and scanning instruments will benefit research areas that include catalysis, fuel cell/energy storage, subsurface science and health-related biology.
  • Radiochemistry Annex - EMSL’s Radiochemistry Annex offers an expansion of capabilities for analysis of radiological samples. It gives users access to a full suite of instrumentation co-located in one facility that is unique in the United States, and one of just a few such facilities worldwide. The Radiochemistry Annex instrument suite is optimal for the study of contaminated environmental materials, examination of radionuclide speciation and detection of chemical signatures.

Read more about this topic:  Environmental Molecular Sciences Laboratory

Famous quotes containing the word research:

    I did my research and decided I just had to live it.
    Karina O’Malley, U.S. sociologist and educator. As quoted in the Chronicle of Higher Education, p. A5 (September 16, 1992)

    ... research is never completed ... Around the corner lurks another possibility of interview, another book to read, a courthouse to explore, a document to verify.
    Catherine Drinker Bowen (1897–1973)

    Our science has become terrible, our research dangerous, our findings deadly. We physicists have to make peace with reality. Reality is not as strong as we are. We will ruin reality.
    Friedrich Dürrenmatt (1921–1990)