Distance Enumerator
The distance distribution or inner distribution of a code C of size M and length n is the sequence of numbers
where i ranges from 0 to n. The distance enumerator polynomial is
and when C is linear this is equal to the weight enumerator.
The outer distribution of C is the 2n-by-n+1 matrix B with rows indexed by elements of GF(2)n and columns indexed by integers 0...n, and entries
The sum of the rows of B is M times the inner distribution vector (A0,...,An).
A code C is regular if the rows of B corresponding to the codewords of C are all equal.
Read more about this topic: Enumerator Polynomial
Famous quotes containing the word distance:
“A solitary traveler whom we saw perambulating in the distance loomed like a giant. He appeared to walk slouchingly, as if held up from above by straps under his shoulders, as much as supported by the plain below. Men and boys would have appeared alike at a little distance, there being no object by which to measure them. Indeed, to an inlander, the Cape landscape is a constant mirage.”
—Henry David Thoreau (18171862)