Entropy (statistical Thermodynamics) - Counting of Microstates

Counting of Microstates

In classical statistical mechanics, the number of microstates is actually uncountably infinite, since the properties of classical systems are continuous. For example, a microstate of a classical ideal gas is specified by the positions and momenta of all the atoms, which range continuously over the real numbers. If we want to define Ω, we have to come up with a method of grouping the microstates together to obtain a countable set. This procedure is known as coarse graining. In the case of the ideal gas, we count two states of an atom as the "same" state if their positions and momenta are within δx and δp of each other. Since the values of δx and δp can be chosen arbitrarily, the entropy is not uniquely defined. It is defined only up to an additive constant. (As we will see, the thermodynamic definition of entropy is also defined only up to a constant.)

This ambiguity can be resolved with quantum mechanics. The quantum state of a system can be expressed as a superposition of "basis" states, which can be chosen to be energy eigenstates (i.e. eigenstates of the quantum Hamiltonian.) Usually, the quantum states are discrete, even though there may be an infinite number of them. For a system with some specified energy E, one takes Ω to be the number of energy eigenstates within a macroscopically small energy range between E and E + δE. In the thermodynamical limit, the specific entropy becomes independent on the choice of δE.

An important result, known as Nernst's theorem or the third law of thermodynamics, states that the entropy of a system at zero absolute temperature is a well-defined constant. This is because a system at zero temperature exists in its lowest-energy state, or ground state, so that its entropy is determined by the degeneracy of the ground state. Many systems, such as crystal lattices, have a unique ground state, and (since ln(1) = 0) this means that they have zero entropy at absolute zero. Other systems have more than one state with the same, lowest energy, and have a non-vanishing "zero-point entropy". For instance, ordinary ice has a zero-point entropy of 3.41 J/(mol·K), because its underlying crystal structure possesses multiple configurations with the same energy (a phenomenon known as geometrical frustration).

The third law of thermodynamics states that the entropy of a perfect crystal at absolute zero, or 0 kelvin is zero. This means that in a perfect crystal, at 0 kelvin, nearly all molecular motion should cease in order to achieve ΔS=0. A perfect crystal is one in which the internal lattice structure is the same at all times; in other words, it is fixed and non-moving, and does not have rotational or vibrational energy. This means that there is only one way in which this order can be attained: when every particle of the structure is in its proper place.

However, the oscillator equation for predicting quantized vibrational levels shows that even when the vibrational quantum number is 0, the molecule still has vibrational energy. This means that no matter how cold the temperature gets, the lattice will always vibrate. This is in keeping with the Heisenberg uncertainty principle, which states that both the position and the momentum of a particle cannot be known precisely, at a given time:

where is Planck's constant, is the characteristic frequency of the vibration, and is the vibrational quantum number. Note that even when (the zero-point energy), does not equal 0.

Read more about this topic:  Entropy (statistical Thermodynamics)

Famous quotes containing the word counting:

    What we commonly call man, the eating, drinking, planting, counting man, does not, as we know him, represent himself, but misrepresents himself. Him we do not respect, but the soul, whose organ he is, would he let it appear through his action, would make our knees bend.
    Ralph Waldo Emerson (1803–1882)