Emulsion - Appearance and Properties

Appearance and Properties

Emulsions contain both a dispersed and a continuous phase, with the boundary between the phases called the "interface". Emulsions tend to have a cloudy appearance because the many phase interfaces scatter light as it passes through the emulsion. Emulsions appear white when all light is scattered equally. If the emulsion is dilute enough, higher-frequency and low-wavelength light will be scattered more, and the emulsion will appear bluer - this is called the "Tyndall effect". If the emulsion is concentrated enough, the color will be distorted toward comparatively longer wavelengths, and will appear more yellow. This phenomenon is easily observable when comparing skimmed milk, which contains little fat, to cream, which contains a much higher concentration of milk fat.

Two special classes of emulsions - microemulsions and nanoemulsions, with droplet sizes below 100 nm - appear translucent. This property is due to the fact that light waves are scattered by the droplets only if their sizes exceed about one-quarter of the wavelength of the incident light. Since the visible spectrum of light is composed of wavelengths between 390 and 750 nanometers (nm), if the droplet sizes in the emulsion are below about 100 nm, the light can penetrate through the emulsion without being scattered. Due to their similarity in appearance, translucent nanoemulsions and microemulsions are frequently confused. Unlike translucent nanoemulsions, which require specialized equipment to be produced, microemulsions are spontaneously formed by “solubilizing” oil molecules with a mixture of surfactants, co-surfactants, and co-solvents. The required surfactant concentration in a microemulsion is, however, several times higher than that in a translucent nanoemulsion, and significantly exceeds the concentration of the dispersed phase. Because of many undesirable side effects caused by surfactants, their presence is disadvantageous or prohibitive in many applications. In addition, the stability of a microemulsion is often easily compromised by dilution, by heating, or by changing pH levels.

Common emulsions are inherently unstable and, thus, do not tend to form spontaneously. Energy input - through shaking, stirring, homogenizing, or exposure to power ultrasound - is needed to form an emulsion. Over time, emulsions tend to revert to the stable state of the phases comprising the emulsion. An example of this is seen in the separation of the oil and vinegar components of vinaigrette, an unstable emulsion that will quickly separate unless shaken almost continuously. There are important exceptions to this rule - microemulsions are thermodynamically stable, while translucent nanoemulsions are kinetically stable.

Whether an emulsion of oil and water turns into a "water-in-oil" emulsion or an "oil-in-water" emulsion depends on the volume fraction of both phases and the type of emulsifier (surfactant) (see Emulsifier, below) present. In general, the Bancroft rule applies. Emulsifiers and emulsifying particles tend to promote dispersion of the phase in which they do not dissolve very well. For example, proteins dissolve better in water than in oil, and so tend to form oil-in-water emulsions (that is, they promote the dispersion of oil droplets throughout a continuous phase of water).

Read more about this topic:  Emulsion

Famous quotes containing the words appearance and/or properties:

    The President has paid dear for his White House. It has commonly cost him all his peace, and the best of his manly attributes. To preserve for a short time so conspicuous an appearance before the world, he is content to eat dust before the real masters who stand erect behind the throne.
    Ralph Waldo Emerson (1803–1882)

    The reason why men enter into society, is the preservation of their property; and the end why they choose and authorize a legislative, is, that there may be laws made, and rules set, as guards and fences to the properties of all the members of the society: to limit the power, and moderate the dominion, of every part and member of the society.
    John Locke (1632–1704)