Definition
Let (x1, …, xn) be iid real random variables with the common cdf F(t). Then the empirical distribution function is defined as
where 1{A} is the indicator of event A. For a fixed t, the indicator 1{xi ≤ t} is a Bernoulli random variable with parameter p = F(t), hence is a binomial random variable with mean nF(t) and variance nF(t)(1 − F(t)). This implies that is an unbiased estimator for F(t).
Read more about this topic: Empirical Distribution Function
Famous quotes containing the word definition:
“The definition of good prose is proper words in their proper places; of good verse, the most proper words in their proper places. The propriety is in either case relative. The words in prose ought to express the intended meaning, and no more; if they attract attention to themselves, it is, in general, a fault.”
—Samuel Taylor Coleridge (17721834)
“... we all know the wags definition of a philanthropist: a man whose charity increases directly as the square of the distance.”
—George Eliot [Mary Ann (or Marian)
“... if, as women, we accept a philosophy of history that asserts that women are by definition assimilated into the male universal, that we can understand our past through a male lensif we are unaware that women even have a historywe live our lives similarly unanchored, drifting in response to a veering wind of myth and bias.”
—Adrienne Rich (b. 1929)