Empirical Distribution Function - Definition

Definition

Let (x1, …, xn) be iid real random variables with the common cdf F(t). Then the empirical distribution function is defined as

 \hat F_n(t) = \frac{ \mbox{number of elements in the sample} \leq t}n =
\frac{1}{n} \sum_{i=1}^n \mathbf{1}\{x_i \le t\},

where 1{A} is the indicator of event A. For a fixed t, the indicator 1{xit} is a Bernoulli random variable with parameter p = F(t), hence is a binomial random variable with mean nF(t) and variance nF(t)(1 − F(t)). This implies that is an unbiased estimator for F(t).

Read more about this topic:  Empirical Distribution Function

Famous quotes containing the word definition:

    The definition of good prose is proper words in their proper places; of good verse, the most proper words in their proper places. The propriety is in either case relative. The words in prose ought to express the intended meaning, and no more; if they attract attention to themselves, it is, in general, a fault.
    Samuel Taylor Coleridge (1772–1834)

    ... we all know the wag’s definition of a philanthropist: a man whose charity increases directly as the square of the distance.
    George Eliot [Mary Ann (or Marian)

    ... if, as women, we accept a philosophy of history that asserts that women are by definition assimilated into the male universal, that we can understand our past through a male lens—if we are unaware that women even have a history—we live our lives similarly unanchored, drifting in response to a veering wind of myth and bias.
    Adrienne Rich (b. 1929)