Embryophyte - Phylogeny and Classification

Phylogeny and Classification

All green algae and land plants are now known to form a single evolutionary lineage or clade, one name for which is Viridiplantae (i.e. 'green plants'). According to several molecular clock estimates the Viridiplantae split 1,200 million years ago to 725 million years ago into two clades: chlorophytes and streptophytes. The chlorophytes are considerably more diverse (with around 700 genera) and were originally marine, although some groups have since spread into fresh water. The streptophyte algae (i.e. the streptophyte clade minus the land plants) are less diverse (with around 122 genera) and adapted to fresh water very early in their evolutionary history. They have not spread into marine environments (only a few stoneworts, which belong to this group, tolerate brackish water). Some time during the Ordovician period (which started around 490 million years ago) one or more streptophytes invaded the land and began the evolution of the embryophyte land plants.

Becker and Marin speculate that land plants evolved from streptophytes rather than any other group of algae because streptophytes were adapted to living in fresh water. This prepared them to tolerate a range of environmental conditions found on land. Fresh water living made them tolerant of exposure to rain; living in shallow pools required tolerance to temperature variation, high levels of ultra-violet light and seasonal dehydration.

Relationships between the groups making up Viridiplantae are still being elucidated; views have changed considerably since 2000 and classifications have not yet caught up. However, the division between chlorophytes and streptophytes and the evolution of embryophytes from within the latter group, as shown in the cladogram below, are well established. Three approaches to classification are shown. Older classifications, as on the left, treated all green algae as a single division of the plant kingdom under the name Chlorophyta. Land plants were then placed in separate divisions. All the streptophyte algae can be grouped into one paraphyletic taxon, as in the middle, allowing the embryophytes to form a taxon at the same level. Alternatively, the embryophytes can be sunk into a monophyletic taxon comprising all the streptophytes, as on the right. A variety of names have been used for the different groups which result from these approaches; those used below are only one of a number of possibilities. The higher-level classification of the Viridiplantae varies considerably, resulting in widely different ranks being assigned to the embryophytes, from kingdom to class.

Viridiplantae

chlorophytes


streptophytes

streptophyte algae
(paraphyletic group)



embryophytes




Plantae
Chlorophyta
all green algae
Land plants
separate divisions
for each group
Viridiplantae
Chlorophyta
~8 chlorophyte algal taxa
Charophyta (paraphyletic)
~6 streptophyte algal taxa
Embryophyta
Viridiplantae
Chlorophyta
~8 chlorophyte algal taxa
Streptophyta
~6 streptophyte algal taxa
Embryophyta


The precise relationships within the streptophytes are less clear as of March 2012. The stoneworts (Charales) have traditionally be identified as closest to the embryophytes, but recent work suggests that either the Zygnematales or a clade consisting of the Zygnematales and the Coleochaetales may be the sister group to the land plants.

The preponderance of currently available molecular evidence suggests that the groups making up the embryophytes are related as shown in the cladogram below (based on Qiu et al. 2006 with additional names from Crane et al. 2004).

Living embryophytes

Liverworts




Mosses




Hornworts


Tracheophytes

Lycophytes


Euphyllophytes

Monilophytes (ferns and horsetails)


Spermatophytes

Gymnosperms



Angiosperms (flowering plants)








Studies based on morphology rather than on genes and proteins have regularly reached different conclusions; for example that neither the monilophytes (ferns and horsetails) nor the gymnosperms are a natural or monophyletic group.

There is considerable variation in how these relationships are converted into a formal classification. Consider the angiosperms or flowering plants. Many botanists, following Lindley in 1830, have treated the angiosperms as a division. Researchers concerned with fossil plants have usually followed Banks in treating the tracheophytes or vascular plants as a division, so that the angiosperms become a class or even a subclass. Two very different systems are shown below. The classification on the left is a traditional one, in which ten living groups are treated as separate divisions; the classification on the right (based on Kenrick and Crane's 1997 treatment) sharply reduces the rank of groups such as the flowering plants. (More complex classifications are needed if extinct plants are included.)

Two contrasting classifications of living land plants
Liverworts Marchiantiophyta Marchiantiophyta
Mosses Bryophyta Bryophyta
Hornworts Anthocerotophyta Anthocerotophyta
Tracheophyta
Lycophytes Lycopodiophyta Lycophytina
Euphyllophytina
Ferns and horsetails Pteridophyta Moniliformopses
Radiatopses
Cycads Cycadophyta Cycadatae
Conifers Pinophyta Coniferophytatae
Ginkgo Ginkgophyta Ginkgoatae
Gnetophytes Gnetophyta Anthophytatae
Flowering plants Magnoliophyta

Read more about this topic:  Embryophyte