Growth of EDS
Let (Wn)n ≥ 1 be a nonsingular EDS that is not periodic. Then the sequence grows quadratic exponentially in the sense that there is a positive constant h such that
The number h is the canonical height of the point on the elliptic curve associated to the EDS.
Read more about this topic: Elliptic Divisibility Sequence
Famous quotes containing the words growth of and/or growth:
“The wind of change is blowing through the continent. Whether we like it or not, this growth of national consciousness is a political fact.”
—Harold MacMillan (18941986)
“Cities force growth and make men talkative and entertaining, but they make them artificial. What possesses interest for us is the natural of each, his constitutional excellence. This is forever a surprise, engaging and lovely; we cannot be satiated with knowing it, and about it; and it is this which the conversation with Nature cherishes and guards.”
—Ralph Waldo Emerson (18031882)