Elliptic Divisibility Sequence - Growth of EDS

Growth of EDS

Let (Wn)n ≥ 1 be a nonsingular EDS that is not periodic. Then the sequence grows quadratic exponentially in the sense that there is a positive constant h such that

 \lim_{n\to\infty} \frac{\log |W_n|}{n^2} = h > 0.

The number h is the canonical height of the point on the elliptic curve associated to the EDS.

Read more about this topic:  Elliptic Divisibility Sequence

Famous quotes containing the word growth:

    From infancy, a growing girl creates a tapestry of ever-deepening and ever- enlarging relationships, with her self at the center. . . . The feminine personality comes to define itself within relationship and connection, where growth includes greater and greater complexities of interaction.
    Jeanne Elium (20th century)