EDS Over Finite Fields
An EDS over a finite field Fq, or more generally over any field, is a sequence of elements of that field satisfying the EDS recursion. An EDS over a finite field is always periodic, and thus has a rank of apparition r. The period of an EDS over Fq then has the form rt, where r and t satisfy
More precisely, there are elements A and B in Fq* such that
The values of A and B are related to the Tate pairing of the point on the associated elliptic curve.
Read more about this topic: Elliptic Divisibility Sequence
Famous quotes containing the words finite and/or fields:
“All finite things reveal infinitude:”
—Theodore Roethke (19081963)
“On fields all drenched with blood he made his record in war, abstained from lawless violence when left on the plantation, and received his freedom in peace with moderation. But he holds in this Republic the position of an alien race among a people impatient of a rival. And in the eyes of some it seems that no valor redeems him, no social advancement nor individual development wipes off the ban which clings to him.”
—Frances Ellen Watkins Harper (18251911)