Elementary Symmetric Polynomial - Examples

Examples

The following lists the n elementary symmetric polynomials for the first four positive values of n. (In every case, e0 = 1 is also one of the polynomials.)

For n = 1:

For n = 2:

\begin{align} e_1(X_1,X_2) &= X_1 + X_2,\\ e_2(X_1,X_2) &= X_1X_2.\,\\
\end{align}

For n = 3:

\begin{align} e_1(X_1,X_2,X_3) &= X_1 + X_2 + X_3,\\ e_2(X_1,X_2,X_3) &= X_1X_2 + X_1X_3 + X_2X_3,\\ e_3(X_1,X_2,X_3) &= X_1X_2X_3.\,\\
\end{align}

For n = 4:

\begin{align} e_1(X_1,X_2,X_3,X_4) &= X_1 + X_2 + X_3 + X_4,\\ e_2(X_1,X_2,X_3,X_4) &= X_1X_2 + X_1X_3 + X_1X_4 + X_2X_3 + X_2X_4 + X_3X_4,\\ e_3(X_1,X_2,X_3,X_4) &= X_1X_2X_3 + X_1X_2X_4 + X_1X_3X_4 + X_2X_3X_4,\\ e_4(X_1,X_2,X_3,X_4) &= X_1X_2X_3X_4.\,\\
\end{align}

Read more about this topic:  Elementary Symmetric Polynomial

Famous quotes containing the word examples:

    In the examples that I here bring in of what I have [read], heard, done or said, I have refrained from daring to alter even the smallest and most indifferent circumstances. My conscience falsifies not an iota; for my knowledge I cannot answer.
    Michel de Montaigne (1533–1592)

    No rules exist, and examples are simply life-savers answering the appeals of rules making vain attempts to exist.
    André Breton (1896–1966)

    It is hardly to be believed how spiritual reflections when mixed with a little physics can hold people’s attention and give them a livelier idea of God than do the often ill-applied examples of his wrath.
    —G.C. (Georg Christoph)