Electroscope - Pith-ball Electroscope

Pith-ball Electroscope

A pith-ball electroscope, invented by British weaver's apprentice John Canton in 1754, consists of a small ball of some lightweight nonconductive substance, originally a spongy plant material called pith, although modern electroscopes use plastic balls. The ball is suspended by a silk thread from the hook of an insulated stand. In order to test the presence of a charge on an object, the object is brought near to the uncharged pith ball. If the object is charged, the ball will be attracted to it and move toward it.

The attraction occurs because of induced polarization of the atoms inside the pith ball. The pith is a nonconductor, so the electrons in the ball are bound to atoms of the pith and are not free to leave the atoms and move about in the ball, but they can move a little within the atoms. See diagram at right. If, for example, a positively charged object (B) is brought near the pith ball (A), the negative electrons (blue) in each atom (yellow ovals) will be attracted and move slightly toward the side of the atom nearer the object. The positively charged nuclei (red) will be repelled and will move slightly away. Since the negative charges in the pith ball are now nearer the object than the positive charges (C), their attraction is greater than the repulsion of the positive charges, resulting in a net attractive force. This separation of charge is microscopic, but since there are so many atoms, the tiny forces add up to a large enough force to move a light pith ball.

The pith ball can be charged by touching it to a charged object, so some of the charges on the surface of the charged object move to the surface of the ball. Then the ball can be used to distinguish the polarity of charge on other objects because it will be repelled by objects charged with the same polarity or sign it has, but attracted to charges of the opposite polarity.

Often the electroscope will have a pair of suspended pith balls. This allows one to tell at a glance whether the pith balls are charged. If one of the pith balls is touched to a charged object, charging it, the second one will be attracted and touch it, communicating some of the charge to the surface of the second ball. Now both balls have the same polarity charge, so they repel each other. They hang in an inverted 'V' shape with the balls spread apart. The distance between the balls will give a rough idea of the magnitude of the charge.

Read more about this topic:  Electroscope