Electron Paramagnetic Resonance - High-field High-frequency Measurements

High-field High-frequency Measurements

High-field high-frequency EPR measurements are sometimes needed to detect subtle spectroscopic details. However, for many years the use of electromagnets to produce the needed fields above 1.5 T was impossible, due principally to limitations of traditional magnet materials. The first multifunctional millimeter EPR spectrometer with a superconducting solenoid was described in the early 1970s by Prof. Y. S. Lebedev's group (Russian Institute of Chemical Physics, Moscow) in collaboration with L. G. Oranski's group (Ukrainian Physics and Technics Institute, Donetsk), which began working in the Institute of Problems of Chemical Physics, Chernogolovka around 1975. Two decades later, a W-band EPR spectrometer was produced as a small commercial line by the German Bruker Company, initiating the expansion of W-band EPR techniques into medium-sized academic laboratories. Today there still are only a few scientific centers in the world capable of high-field high-frequency EPR; among them are the Grenoble High Magnetic Field Laboratory in Grenoble, France, the Physics Department in Freie Universität Berlin, the National High Magnetic Field Laboratory in Tallahassee, US, the National Center for Advanced ESR Technology (ACERT) at Cornell University in Ithaca, US, the Department of Physiology, and Biophysics at Albert Einstein College of Medicine, Bronx, NY, the HLD and IFW in Dresden, Germany, the Institute of Physics of Complex Matter in Lausanne in Switzerland, and the Institute of Physics of the Leiden University, Netherlands.

Waveband L S C X P K Q U V E W F D J
300 100 75 30 20 12.5 8.5 6 4.6 4 3.2 2.7 2.1 1.6 1.1 0.83
1 3 4 10 15 24 35 50 65 75 95 111 140 190 285 360
0.03 0.11 0.14 0.33 0.54 0.86 1.25 1.8 2.3 2.7 3.5 3.9 4.9 6.8 10.2 12.8

The EPR waveband is stipulated by the frequency or wavelength of a spectrometer's microwave source (see Table).

EPR experiments often are conducted at X and, less commonly, Q bands, mainly due to the ready availability of the necessary microwave components (which originally were developed for radar applications). A second reason for widespread X and Q band measurements is that electromagnets can reliably generate fields up to about 1 tesla. However, the low spectral resolution over g-factor at these wavebands limits the study of paramagnetic centers with comparatively low anisotropic magnetic parameters. Measurements at > 40 GHz, in the millimeter wavelength region, offer the following advantages:

  1. EPR spectra are simplified due to the reduction of second-order effects at high fields.
  2. Increase in orientation selectivity and sensitivity in the investigation of disordered systems.
  3. The informativity and precision of pulse methods, e.g., ENDOR also increase at high magnetic fields.
  4. Accessibility of spin systems with larger zero-field splitting due to the larger microwave quantum energy h.
  5. The higher spectral resolution over g-factor, which increases with irradiation frequency and external magnetic field B0. This is used to investigate the structure, polarity, and dynamics of radical microenvironments in spin-modified organic and biological systems through the spin label and probe method. The figure shows how spectral resolution improves with increasing frequency.
  6. Saturation of paramagnetic centers occurs at a comparatively low microwave polarizing field B1, due to the exponential dependence of the number of excited spins on the radiation frequency . This effect can be successfully used to study the relaxation and dynamics of paramagnetic centers as well as of superslow motion in the systems under study.
  7. The cross-relaxation of paramagnetic centers decreases dramatically at high magnetic fields, making it easier to obtain more-precise and more-complete information about the system under study.

This was demonstrated experimentally in the study of various biological, polymeric and model systems at D-band EPR.

Read more about this topic:  Electron Paramagnetic Resonance