Electron - Plasma Applications - Other Applications

Other Applications

In the free-electron laser (FEL), a relativistic electron beam is passed through a pair of undulators containing arrays of dipole magnets, whose fields are oriented in alternating directions. The electrons emit synchrotron radiation, which, in turn, coherently interacts with the same electrons. This leads to the strong amplification of the radiation field at the resonance frequency. FEL can emit a coherent high-brilliance electromagnetic radiation with a wide range of frequencies, from microwaves to soft X-rays. These devices can be used in the future for manufacturing, communication and various medical applications, such as soft tissue surgery.

Electrons are at the heart of cathode ray tubes, which have been used extensively as display devices in laboratory instruments, computer monitors and television sets. In a photomultiplier tube, every photon striking the photocathode initiates an avalanche of electrons that produces a detectable current pulse. Vacuum tubes use the flow of electrons to manipulate electrical signals, and they played a critical role in the development of electronics technology. However, they have been largely supplanted by solid-state devices such as the transistor.

Read more about this topic:  Electron, Plasma Applications