Electrical Steel - Metallurgy

Metallurgy

Electrical steel is an iron alloy which may have from zero to 6.5% silicon (Si:5Fe). Commercial alloys usually have silicon content up to 3.2% (higher concentrations usually provoke brittleness during cold rolling). Manganese and aluminum can be added up to 0.5%.

Silicon significantly increases the electrical resistivity of the steel, which decreases the induced eddy currents and narrows the hysteresis loop of the material, thus lowering the core loss. However, the grain structure hardens and embrittles the metal, which adversely affects the workability of the material, especially when rolling it. When alloying, the concentration levels of carbon, sulfur, oxygen and nitrogen must be kept low, as these elements indicate the presence of carbides, sulfides, oxides and nitrides. These compounds, even in particles as small as one micrometer in diameter, increase hysteresis losses while also decreasing magnetic permeability. The presence of carbon has a more detrimental effect than sulfur or oxygen. Carbon also causes magnetic aging when it slowly leaves the solid solution and precipitates as carbides, thus resulting in an increase in power loss over time. For these reasons, the carbon level is kept to 0.005% or lower. The carbon level can be reduced by annealing the steel in a decarburizing atmosphere, such as hydrogen.

Read more about this topic:  Electrical Steel