Electric Arc Furnace - Operation

Operation

Scrap metal is delivered to a scrap bay, located next to the melt shop. Scrap generally comes in two main grades: shred (whitegoods, cars and other objects made of similar light-gauge steel) and heavy melt (large slabs and beams), along with some direct reduced iron (DRI) or pig iron for chemical balance. Some furnaces melt almost 100% DRI.

The scrap is loaded into large buckets called baskets, with "clamshell" doors for a base. Care is taken to layer the scrap in the basket to ensure good furnace operation; heavy melt is placed on top of a light layer of protective shred, on top of which is placed more shred. These layers should be present in the furnace after charging. After loading, the basket may pass to a scrap pre-heater, which uses hot furnace off-gases to heat the scrap and recover energy, increasing plant efficiency.

The scrap basket is then taken to the melt shop, the roof is swung off the furnace, and the furnace is charged with scrap from the basket. Charging is one of the more dangerous operations for the EAF operators. A lot of potential energy is released by multiple tonnes of falling metal; any liquid metal in the furnace is often displaced upwards and outwards by the solid scrap, and the grease and dust on the scrap is ignited if the furnace is hot, resulting in a fireball erupting. In some twin-shell furnaces, the scrap is charged into the second shell while the first is being melted down, and pre-heated with off-gas from the active shell. Other operations are continuous charging—pre-heating scrap on a conveyor belt, which then discharges the scrap into the furnace proper, or charging the scrap from a shaft set above the furnace, with off-gases directed through the shaft. Other furnaces can be charged with hot (molten) metal from other operations.

After charging, the roof is swung back over the furnace and meltdown commences. The electrodes are lowered onto the scrap, an arc is struck and the electrodes are then set to bore into the layer of shred at the top of the furnace. Lower voltages are selected for this first part of the operation to protect the roof and walls from excessive heat and damage from the arcs. Once the electrodes have reached the heavy melt at the base of the furnace and the arcs are shielded by the scrap, the voltage can be increased and the electrodes raised slightly, lengthening the arcs and increasing power to the melt. This enables a molten pool to form more rapidly, reducing tap-to-tap times. Oxygen is blown into the scrap, combusting or cutting the steel, and extra chemical heat is provided by wall-mounted oxygen-fuel burners. Both processes accelerate scrap meltdown. Supersonic nozzles enable oxygen jets to penetrate foaming slag and reach the liquid bath.

An important part of steelmaking is the formation of slag, which floats on the surface of the molten steel. Slag usually consists of metal oxides, and acts as a destination for oxidised impurities, as a thermal blanket (stopping excessive heat loss) and helping to reduce erosion of the refractory lining. For a furnace with basic refractories, which includes most carbon steel-producing furnaces, the usual slag formers are calcium oxide (CaO, in the form of burnt lime) and magnesium oxide (MgO, in the form of dolomite and magnesite). These slag formers are either charged with the scrap, or blown into the furnace during meltdown. Another major component of EAF slag is iron oxide from steel combusting with the injected oxygen. Later in the heat, carbon (in the form of coke or coal) is injected into this slag layer, reacting with the iron oxide to form metallic iron and carbon monoxide gas, which then causes the slag to foam, allowing greater thermal efficiency, and better arc stability and electrical efficiency. The slag blanket also covers the arcs, preventing damage to the furnace roof and sidewalls from radiant heat.

Once the scrap has completely melted down and a flat bath is reached, another bucket of scrap can be charged into the furnace and melted down, although EAF development is moving towards single-charge designs. After the second charge is completely melted, refining operations take place to check and correct the steel chemistry and superheat the melt above its freezing temperature in preparation for tapping. More slag formers are introduced and more oxygen is blown into the bath, burning out impurities such as silicon, sulfur, phosphorus, aluminium, manganese, and calcium, and removing their oxides to the slag. Removal of carbon takes place after these elements have burnt out first, as they have a greater affinity for oxygen. Metals that have a poorer affinity for oxygen than iron, such as nickel and copper, cannot be removed through oxidation and must be controlled through scrap chemistry alone, such as introducing the direct reduced iron and pig iron mentioned earlier. A foaming slag is maintained throughout, and often overflows the furnace to pour out of the slag door into the slag pit. Temperature sampling and chemical sampling take place via automatic lances. Oxygen and carbon can be automatically measured via special probes that dip into the steel, but for all other elements, a "chill" sample—a small, solidified sample of the steel—is analysed on an arc-emission spectrometer.

Once the temperature and chemistry are correct, the steel is tapped out into a preheated ladle through tilting the furnace. For plain-carbon steel furnaces, as soon as slag is detected during tapping the furnace is rapidly tilted back towards the deslagging side, minimising slag carryover into the ladle. For some special steel grades, including stainless steel, the slag is poured into the ladle as well, to be treated at the ladle furnace to recover valuable alloying elements. During tapping some alloy additions are introduced into the metal stream, and more lime is added on top of the ladle to begin building a new slag layer. Often, a few tonnes of liquid steel and slag is left in the furnace in order to form a "hot heel", which helps preheat the next charge of scrap and accelerate its meltdown. During and after tapping, the furnace is "turned around": the slag door is cleaned of solidified slag, repairs may take place, and electrodes are inspected for damage or lengthened through the addition of new segments; the taphole is filled with sand at the completion of tapping. For a 90-tonne, medium-power furnace, the whole process will usually take about 60–70 minutes from the tapping of one heat to the tapping of the next (the tap-to-tap time).

Read more about this topic:  Electric Arc Furnace

Famous quotes containing the word operation:

    Waiting for the race to become official, he began to feel as if he had as much effect on the final outcome of the operation as a single piece of a jumbo jigsaw puzzle has to its predetermined final design. Only the addition of the missing fragments of the puzzle would reveal if the picture was as he guessed it would be.
    Stanley Kubrick (b. 1928)

    It is critical vision alone which can mitigate the unimpeded operation of the automatic.
    Marshall McLuhan (1911–1980)

    It requires a surgical operation to get a joke well into a Scotch understanding. The only idea of wit, or rather that inferior variety of the electric talent which prevails occasionally in the North, and which, under the name of “Wut,” is so infinitely distressing to people of good taste, is laughing immoderately at stated intervals.
    Sydney Smith (1771–1845)