Einstein Notation - Common Operations in This Notation

Common Operations in This Notation

In Einstein notation, the usual element reference for the mth row and nth column of matrix A becomes . We can then write the following operations in Einstein notation as follows.

Inner product (hence also Vector dot product)

Using an orthogonal basis, the inner product is the sum of corresponding components multiplied together:

This can also be calculated by multiplying the covector on the vector.

Vector cross product

Again using an orthogonal basis (in 3d) the cross product intrisically involves summations over permutations of components:

where

and is the Levi-Civita symbol.

Matrix multiplication

The matrix product of two matrices and is:

equivalent to

Trace

For a square matrix, the trace is the sum of the diagonal elements, hence the sum over a common index .

Outer product

The outer product of the column vector by the row vector yields an m×n matrix A:

Since i and j represent two different indices, there is no summation and the indices are not eliminated by the multiplication.

Read more about this topic:  Einstein Notation

Famous quotes containing the words common and/or operations:

    It is a maxim among these lawyers, that whatever hath been done before, may legally be done again: and therefore they take special care to record all the decisions formerly made against common justice and the general reason of mankind.
    Jonathan Swift (1667–1745)

    There is a patent office at the seat of government of the universe, whose managers are as much interested in the dispersion of seeds as anybody at Washington can be, and their operations are infinitely more extensive and regular.
    Henry David Thoreau (1817–1862)