Eigendecomposition of A Matrix - Eigendecomposition of A Matrix

Eigendecomposition of A Matrix

Let A be a square (N×N) matrix with N linearly independent columns, Then A can be factorized as

where Q is the square (N×N) matrix whose ith column is the eigenvector of A and Λ is the diagonal matrix whose diagonal elements are the corresponding eigenvalues, i.e., . Note that only diagonalizable matrices can be factorized in this way. For example, the defective matrix \begin{pmatrix}
1 & 1 \\
0 & 1 \\
\end{pmatrix} cannot be diagonalized.

The eigenvectors are usually normalized, but they need not be. A non-normalized set of eigenvectors, can also be used as the columns of Q. That this is true can be understood by noting that the magnitude of the eigenvectors in Q gets canceled in the decomposition by the presence of Q−1.

Read more about this topic:  Eigendecomposition Of A Matrix

Famous quotes containing the word matrix:

    As all historians know, the past is a great darkness, and filled with echoes. Voices may reach us from it; but what they say to us is imbued with the obscurity of the matrix out of which they come; and try as we may, we cannot always decipher them precisely in the clearer light of our day.
    Margaret Atwood (b. 1939)