Eckart Conditions - Separation of External and Internal Coordinates

Separation of External and Internal Coordinates

The N position vectors of the nuclei constitute a 3N dimensional linear space R3N: the configuration space. The Eckart conditions give an orthogonal direct sum decomposition of this space


\mathbf{R}^{3N} = \mathbf{R}_\textrm{ext}\oplus\mathbf{R}_\textrm{int}.

The elements of the 3N-6 dimensional subspace Rint are referred to as internal coordinates, because they are invariant under overall translation and rotation of the molecule and, thus, depend only on the internal (vibrational) motions. The elements of the 6-dimensional subspace Rext are referred to as external coordinates, because they are associated with the overall translation and rotation of the molecule.

To clarify this nomenclature we define first a basis for Rext. To that end we introduce the following 6 vectors (i=1,2,3):


\begin{align}
\vec{s}^A_{i} &\equiv \vec{f}_i \\
\vec{s}^A_{i+3} &\equiv \vec{f}_i \times\vec{R}_A^0 .\\
\end{align}

An orthogonal, unnormalized, basis for Rext is,


\vec{S}_t \equiv \operatorname{row}(\sqrt{M_1}\;\vec{s}^{\,1}_{t}, \ldots, \sqrt{M_N} \;\vec{s}^{\,N}_{t})
\quad\mathrm{for}\quad t=1,\ldots, 6.

A mass-weighted displacement vector can be written as


\vec{D} \equiv \operatorname{col}(\sqrt{M_1}\;\vec{d}^{\,1}, \ldots, \sqrt{M_N}\;\vec{d}^{\,N})
\quad\mathrm{with}\quad
\vec{d}^{\,A} \equiv \vec{\mathbf{F}}\cdot \mathbf{d}_A .

For i=1,2,3,


\vec{S}_i \cdot \vec{D} = \sum_{A=1}^N \; M_A \vec{s}^{\,A}_i \cdot \vec{d}^{\,A}
=\sum_{A=1}^N M_A d_{Ai} = 0,

where the zero follows because of the translational Eckart conditions. For i=4,5,6

\, \vec{S}_i \cdot \vec{D} = \sum_{A=1}^N \; M_A \big(\vec{f}_i \times\vec{R}_A^0\big) \cdot \vec{d}^{\,A}=\vec{f}_i \cdot \sum_{A=1}^N M_A \vec{R}_A^0 \times\vec{d}^A = \sum_{A=1}^N M_A \big( \mathbf{R}_A^0 \times \mathbf{d}_A\big)_i = 0,

where the zero follows because of the rotational Eckart conditions. We conclude that the displacement vector belongs to the orthogonal complement of Rext, so that it is an internal vector.

We obtain a basis for the internal space by defining 3N-6 linearly independent vectors


\vec{Q}_r \equiv \operatorname{row}(\frac{1}{\sqrt{M_1}}\;\vec{q}_r^{\,1}, \ldots, \frac{1}{\sqrt{M_N}}\;\vec{q}_r^{\,N}), \quad\mathrm{for}\quad r=1,\ldots, 3N-6.

The vectors could be Wilson's s-vectors or could be obtained in the harmonic approximation by diagonalizing the Hessian of V. We next introduce internal (vibrational) modes,


q_r \equiv \vec{Q}_r \cdot \vec{D} = \sum_{A=1}^N \vec{q}^A_r \cdot \vec{d}^{\,A}
\quad\mathrm{for}\quad r=1,\ldots, 3N-6.

The physical meaning of qr depends on the vectors . For instance, qr could be a symmetric stretching mode, in which two C—H bonds are simultaneously stretched and contracted.

We already saw that the corresponding external modes are zero because of the Eckart conditions,


s_t \equiv \vec{S}_t \cdot \vec{D} = \sum_{A=1}^N M_A \;\vec{s}^{\,A}_t \cdot \vec{d}^{\,A} = 0
\quad\mathrm{for}\quad t=1,\ldots, 6.

Read more about this topic:  Eckart Conditions

Famous quotes containing the words separation of, separation, external and/or internal:

    There is nothing that I shudder at more than the idea of a separation of the Union. Should such an event ever happen, which I fervently pray God to avert, from that date I view our liberty gone.
    Andrew Jackson (1767–1845)

    I was the one who was working to destroy the one thing to which I was committed, that is, my relationship with Gilberte; I was doing so by creating, little by little and through the prolonged separation from my friend, not her indifference, but my own. It was toward a long and cruel suicide of the self within myself which loved Gilberte that I continuously set myself ...
    Marcel Proust (1871–1922)

    It is not a certain conformity of manners that the painting of Van Gogh attacks, but rather the conformity of institutions themselves. And even external nature, with her climates, her tides, and her equinoctial storms, cannot, after van Gogh’s stay upon earth, maintain the same gravitation.
    Antonin Artaud (1896–1948)

    The internal effects of a mutable policy ... poisons the blessings of liberty itself.
    James Madison (1751–1836)