Eckart Conditions - Relation To The Harmonic Approximation

Relation To The Harmonic Approximation

In the harmonic approximation to the nuclear vibrational problem, expressed in displacement coordinates, one must solve the generalized eigenvalue problem

 \mathbf{H}\mathbf{C} = \mathbf{M} \mathbf{C} \boldsymbol{\Phi},

where H is a 3N × 3N symmetric matrix of second derivatives of the potential . H is the Hessian matrix of V in the equilibrium . The diagonal matrix M contains the masses on the diagonal. The diagonal matrix contains the eigenvalues, while the columns of C contain the eigenvectors.

It can be shown that the invariance of V under simultaneous translation over t of all nuclei implies that vectors T = (t, ..., t) are in the kernel of H. From the invariance of V under an infinitesimal rotation of all nuclei around s, it can be shown that also the vectors S = (s x R10, ..., s x RN0) are in the kernel of H :


\mathbf{H}
\begin{pmatrix} \mathbf{t} \\ \vdots\\ \mathbf{t} \end{pmatrix} =
\begin{pmatrix} \mathbf{0} \\ \vdots\\ \mathbf{0} \end{pmatrix}
\quad\mathrm{and}\quad
\mathbf{H}
\begin{pmatrix} \mathbf{s}\times \mathbf{R}_1^0 \\ \vdots\\ \mathbf{s}\times \mathbf{R}_N^0 \end{pmatrix} =
\begin{pmatrix} \mathbf{0} \\ \vdots\\ \mathbf{0} \end{pmatrix}

Thus, six columns of C corresponding to eigenvalue zero are determined algebraically. (If the generalized eigenvalue problem is solved numerically, one will find in general six linearly independent linear combinations of S and T). The eigenspace corresponding to eigenvalue zero is at least of dimension 6 (often it is exactly of dimension 6, since the other eigenvalues, which are force constants, are never zero for molecules in their ground state). Thus, T and S correspond to the overall (external) motions: translation and rotation, respectively. They are zero-energy modes because space is homogeneous (force-free) and isotropic (torque-free).

By the definition in this article, the non-zero frequency modes are internal modes, since they are within the orthogonal complement of Rext. The generalized orthogonalities: applied to the "internal" (non-zero eigenvalue) and "external" (zero-eigenvalue) columns of C are equivalent to the Eckart conditions.

Read more about this topic:  Eckart Conditions

Famous quotes containing the words relation to the, relation to, relation and/or harmonic:

    Much poetry seems to be aware of its situation in time and of its relation to the metronome, the clock, and the calendar. ... The season or month is there to be felt; the day is there to be seized. Poems beginning “When” are much more numerous than those beginning “Where” of “If.” As the meter is running, the recurrent message tapped out by the passing of measured time is mortality.
    William Harmon (b. 1938)

    Any relation to the land, the habit of tilling it, or mining it, or even hunting on it, generates the feeling of patriotism. He who keeps shop on it, or he who merely uses it as a support to his desk and ledger, or to his manufactory, values it less.
    Ralph Waldo Emerson (1803–1882)

    The foregoing generations beheld God and nature face to face; we, through their eyes. Why should not we also enjoy an original relation to the universe? Why should not we have a poetry and philosophy of insight and not of tradition, and a religion by revelation to us, and not the history of theirs?
    Ralph Waldo Emerson (1803–1882)

    For decades child development experts have erroneously directed parents to sing with one voice, a unison chorus of values, politics, disciplinary and loving styles. But duets have greater harmonic possibilities and are more interesting to listen to, so long as cacophony or dissonance remains at acceptable levels.
    Kyle D. Pruett (20th century)