Chandrasekhar Dynamical Friction Formula
The full Chandrasekhar dynamical friction formula for the change in velocity of the object involves integrating over the phase space density of the field of matter and is far from transparent.
A commonly used special case is where there is a uniform density in the field of matter, with matter particles significantly lighter than the major particle under consideration and with a Maxwellian distribution for the velocity of matter particles. In this case, the dynamical friction force is as follows:
where
- G is the gravitational constant.
- M is the mass under consideration.
- is the velocity of the object under consideration, in a frame where the center of gravity of the matter field is initially at rest.
- is the ratio of the velocity of the object under consideration to the modal velocity of the Maxwellian distribution. ( is the velocity dispersion).
- is the "error function" obtained by integrating the normal distribution.
- is the density of the matter field.
- is the "Coulomb logarithm".
In general, a simplified equation for the force from dynamical friction has the form
where the dimensionless numerical factor depends on how compares to the velocity dispersion of the surrounding matter.
Read more about this topic: Dynamical Friction
Famous quotes containing the words friction and/or formula:
“We have got onto slippery ice where there is no friction and so in a certain sense the conditions are ideal, but also, just because of that, we are unable to walk. We want to walk so we need friction. Back to the rough ground!”
—Ludwig Wittgenstein (18891951)
“But suppose, asks the student of the professor, we follow all your structural rules for writing, what about that something else that brings the book alive? What is the formula for that? The formula for that is not included in the curriculum.”
—Fannie Hurst (18891968)