Dubnium - Nucleosynthesis History - Cold Fusion

Cold Fusion

This section deals with the synthesis of nuclei of dubnium by so-called "cold" fusion reactions. These are processes which create compound nuclei at low excitation energy (~10-20 MeV, hence "cold"), leading to a higher probability of survival from fission. The excited nucleus then decays to the ground state via the emission of one or two neutrons only.

209Bi(50Ti,xn)259-xDb (x=1,2,3)

The first attempts to synthesise dubnium using cold fusion reactions were performed in 1976 by the team at FLNR, Dubna using the above reaction. They were able to detect a 5 s spontaneous fission (SF) activity which they assigned to 257Db. This assignment was later corrected to 258Db. In 1981, the team at GSI studied this reaction using the improved technique of correlation of genetic parent-daughter decays. They were able to positively identify 258Db, the product from the 1n neutron evaporation channel. In 1983, the team at Dubna revisited the reaction using the method of identification of a descendant using chemical separation. They succeeded in measuring alpha decays from known descendants of the decay chain beginning with 258Db. This was taken as providing some evidence for the formation of dubnium nuclei. The team at GSI revisited the reaction in 1985 and were able to detect 10 atoms of 257Db. After a significant upgrade of their facilities in 1993, in 2000 the team measured 120 decays of 257Db, 16 decays of 256Db and decay of 258Db in the measurement of the 1n, 2n and 3n excitation functions. The data gathered for 257Db allowed a first spectroscopic study of this isotope and identified an isomer, 257mDb, and a first determination of a decay level structure for 257Db. The reaction was used in spectroscopic studies of isotopes of mendelevium and einsteinium in 2003-2004.

209Bi(49Ti,xn)258-xDb (x=2?)

This reaction was studied by Yuri Oganessian and the team at Dubna in 1983. They observed a 2.6 s SF activity tentatively assigned to 256Db. Later results suggest a possible reassignment to 256Rf, resulting from the ~30% EC branch in 256Db.

209Bi(48Ti,xn)257-xDb (x=1?)

This reaction was studied by Yuri Oganessian and the team at Dubna in 1983. They observed a 1.6 s activity with a ~80% alpha branch with a ~20% SF branch. The activity was tentatively assigned to 255Db. Later results suggest a reassignment to 256Db.

208Pb(51V,xn)259-xDb (x=1,2)

The team at Dubna also studied this reaction in 1976 and were again able to detect the 5 s SF activity, first tentatively assigned to 257Db and later to 258Db. In 2006, the team at LBNL reinvestigated this reaction as part of their odd-Z projectile program. They were able to detect 258Db and 257Db in their measurement of the 1n and 2n neutron evaporation channels.

207Pb(51V,xn)258-xDb

The team at Dubna also studied this reaction in 1976 but this time they were unable to detect the 5 s SF activity, first tentatively assigned to 257Db and later to 258Db. Instead, they were able to measure a 1.5 s SF activity, tentatively assigned to 255Db.

205Tl(54Cr,xn)259-xDb (x=1?)

The team at Dubna also studied this reaction in 1976 and were again able to detect the 5 s SF activity, first tentatively assigned to 257Db and later to 258Db.

Read more about this topic:  Dubnium, Nucleosynthesis History

Famous quotes containing the words cold and/or fusion:

    I am cold in this cold house this house
    Whose washed echoes are tremulous down lost halls.
    I am a woman, and dusty, standing among new affairs.
    I am a woman who hurries through her prayers.
    Gwendolyn Brooks (b. 1917)

    No ... the real American has not yet arrived. He is only in the Crucible, I tell you—he will be the fusion of all races, perhaps the coming superman.
    Israel Zangwill (1864–1926)