Drag Coefficient - Background

Background

The drag equation:

is essentially a statement that the drag force on any object is proportional to the density of the fluid and proportional to the square of the relative speed between the object and the fluid.

Cd is not a constant but varies as a function of speed, flow direction, object position, object size, fluid density and fluid viscosity. Speed, kinematic viscosity and a characteristic length scale of the object are incorporated into a dimensionless quantity called the Reynolds number or . is thus a function of . In compressible flow, the speed of sound is relevant and is also a function of Mach number .

For a certain body shape the drag coefficient only depends on the Reynolds number, Mach number and the direction of the flow. For low Mach number, the drag coefficient is independent of Mach number. Also the variation with Reynolds number within a practical range of interest is usually small, while for cars at highway speed and aircraft at cruising speed the incoming flow direction is as well more-or-less the same. So the drag coefficient can often be treated as a constant.

For a streamlined body to achieve a low drag coefficient the boundary layer around the body must remain attached to the surface of the body for as long as possible, causing the wake to be narrow. A high form drag results in a broad wake. The boundary layer will transition from laminar to turbulent providing the Reynolds number of the flow around the body is high enough. Larger velocities, larger objects, and lower viscosities contribute to larger Reynolds numbers.

For other objects, such as small particles, one can no longer consider that the drag coefficient is constant, but certainly is a function of Reynolds number. At a low Reynolds number, the flow around the object does not transition to turbulent but remains laminar, even up to the point at which it separates from the surface of the object. At very low Reynolds numbers, without flow separation, the drag force is proportional to instead of ; for a sphere this is known as Stokes law. Reynolds number will be low for small objects, low velocities, and high viscosity fluids.

A equal to 1 would be obtained in a case where all of the fluid approaching the object is brought to rest, building up stagnation pressure over the whole front surface. The top figure shows a flat plate with the fluid coming from the right and stopping at the plate. The graph to the left of it shows equal pressure across the surface. In a real flat plate the fluid must turn around the sides, and full stagnation pressure is found only at the center, dropping off toward the edges as in the lower figure and graph. Only considering the front size, the of a real flat plate would be less than 1; except that there will be suction on the back side: a negative pressure (relative to ambient). The overall of a real square flat plate perpendicular to the flow is often given as 1.17. Flow patterns and therefore for some shapes can change with the Reynolds number and the roughness of the surfaces.

Read more about this topic:  Drag Coefficient

Famous quotes containing the word background:

    In the true sense one’s native land, with its background of tradition, early impressions, reminiscences and other things dear to one, is not enough to make sensitive human beings feel at home.
    Emma Goldman (1869–1940)

    I had many problems in my conduct of the office being contrasted with President Kennedy’s conduct in the office, with my manner of dealing with things and his manner, with my accent and his accent, with my background and his background. He was a great public hero, and anything I did that someone didn’t approve of, they would always feel that President Kennedy wouldn’t have done that.
    Lyndon Baines Johnson (1908–1973)

    They were more than hostile. In the first place, I was a south Georgian and I was looked upon as a fiscal conservative, and the Atlanta newspapers quite erroneously, because they didn’t know anything about me or my background here in Plains, decided that I was also a racial conservative.
    Jimmy Carter (James Earl Carter, Jr.)