(Semi)spray Structures
A Semispray structure on a smooth manifold M is by definition a smooth vector field H on TM \0 such that JH=V. An equivalent definition is that j(H)=H, where j:TTM→TTM is the canonical flip. A semispray H is a spray, if in addition, =H.
Spray and semispray structures are invariant versions of second order ordinary differential equations on M. The difference between spray and semispray structures is that the solution curves of sprays are invariant in positive reparametrizations as point sets on M, whereas solution curves of semisprays typically are not.
Read more about this topic: Double Tangent Bundle
Famous quotes containing the word structures:
“It is clear that all verbal structures with meaning are verbal imitations of that elusive psychological and physiological process known as thought, a process stumbling through emotional entanglements, sudden irrational convictions, involuntary gleams of insight, rationalized prejudices, and blocks of panic and inertia, finally to reach a completely incommunicable intuition.”
—Northrop Frye (b. 1912)