Definition
If H is a Hilbert space, then L1,∞(H) is the space of compact linear operators T on H such that the norm
is finite, where the numbers μi(T) are the eigenvalues of |T| arranged in decreasing order. Let
- .
The Dixmier trace Trω(T) of T is defined for positive operators T of L1,∞(H) to be
where limω is a scale-invariant positive "extension" of the usual limit, to all bounded sequences. In other words, it has the following properties:
- limω(αn) ≥ 0 if all αn ≥ 0 (positivity)
- limω(αn) = lim(αn) whenever the ordinary limit exists
- limω(α1, α1, α2, α2, α3, ...) = limω(αn) (scale invariance)
There are many such extensions (such as a Banach limit of α1, α2, α4, α8,...) so there are many different Dixmier traces. As the Dixmier trace is linear, it extends by linearity to all operators of L1,∞(H). If the Dixmier trace of an operator is independent of the choice of limω then the operator is called measurable.
Read more about this topic: Dixmier Trace
Famous quotes containing the word definition:
“Mothers often are too easily intimidated by their childrens negative reactions...When the child cries or is unhappy, the mother reads this as meaning that she is a failure. This is why it is so important for a mother to know...that the process of growing up involves by definition things that her child is not going to like. Her job is not to create a bed of roses, but to help him learn how to pick his way through the thorns.”
—Elaine Heffner (20th century)
“Scientific method is the way to truth, but it affords, even in
principle, no unique definition of truth. Any so-called pragmatic
definition of truth is doomed to failure equally.”
—Willard Van Orman Quine (b. 1908)
“No man, not even a doctor, ever gives any other definition of what a nurse should be than thisdevoted and obedient. This definition would do just as well for a porter. It might even do for a horse. It would not do for a policeman.”
—Florence Nightingale (18201910)