Discrete Fourier Transform (general) - Matrix Formulation

Matrix Formulation

Since the discrete Fourier transform is a linear operator, it can be described by matrix multiplication. In matrix notation, the discrete Fourier transform is expressed as follows:


\begin{bmatrix}f_0\\f_1\\\vdots\\f_{n-1}\end{bmatrix}
= \begin{bmatrix}
1&1&1&\cdots &1 \\
1&\alpha&\alpha^2&\cdots&\alpha^{n-1} \\
1&\alpha^2&\alpha^4&\cdots&\alpha^{2(n-1)}\\
\vdots&\vdots&\vdots&&\vdots\\
1&\alpha^{n-1}&\alpha^{2(n-1)}&\cdots&\alpha^{(n-1)(n-1)}\\
\end{bmatrix}
\begin{bmatrix}v_0\\v_1\\\vdots\\v_{n-1}\end{bmatrix}.

The matrix for this transformation is called the DFT matrix.

Similarly, the matrix notation for the inverse Fourier transform is


\begin{bmatrix}v_0\\v_1\\\vdots\\v_{n-1}\end{bmatrix}
= \frac{1}{n}\begin{bmatrix}
1&1&1&\cdots &1 \\
1&\alpha^{-1}&\alpha^{-2}&\cdots&\alpha^{-(n-1)} \\
1&\alpha^{-2}&\alpha^{-4}&\cdots&\alpha^{-2(n-1)}\\
\vdots&\vdots&\vdots&&\vdots\\
1&\alpha^{-(n-1)}&\alpha^{-2(n-1)}&\cdots&\alpha^{-(n-1)(n-1)}
\end{bmatrix}
\begin{bmatrix}f_0\\f_1\\\vdots\\f_{n-1}\end{bmatrix}.

Read more about this topic:  Discrete Fourier Transform (general)

Famous quotes containing the words matrix and/or formulation:

    “The matrix is God?”
    “In a manner of speaking, although it would be more accurate ... to say that the matrix has a God, since this being’s omniscience and omnipotence are assumed to be limited to the matrix.”
    “If it has limits, it isn’t omnipotent.”
    “Exactly.... Cyberspace exists, insofar as it can be said to exist, by virtue of human agency.”
    William Gibson (b. 1948)

    You do not mean by mystery what a Catholic does. You mean an interesting uncertainty: the uncertainty ceasing interest ceases also.... But a Catholic by mystery means an incomprehensible certainty: without certainty, without formulation there is no interest;... the clearer the formulation the greater the interest.
    Gerard Manley Hopkins (1844–1889)