Discrete Fourier Transform (general) - Definition

Definition

Let be any ring, let be an integer, and let be a principal nth root of unity, defined by:

  • for

The discrete Fourier transform maps an n-tuple of elements of to another n-tuple of elements of according to the following formula:

By convention, the tuple is said to be in the time domain and the index is called time. The tuple is said to be in the frequency domain and the index is called frequency. The tuple is also called the spectrum of . This terminology derives from the applications of Fourier transforms in signal processing.

If R is an integral domain (which includes fields), it is sufficient to choose as a primitive nth root of unity, which replaces the condition (1) by:

for

Proof: take with . Since, giving:

where the sum matches (1). Since is a primitive root of unity, . Since R is an integral domain, the sum must be zero. ∎

Another simple condition applies in the case where n is a power of two: (1) may be replaced by .

Read more about this topic:  Discrete Fourier Transform (general)

Famous quotes containing the word definition:

    The physicians say, they are not materialists; but they are:MSpirit is matter reduced to an extreme thinness: O so thin!—But the definition of spiritual should be, that which is its own evidence. What notions do they attach to love! what to religion! One would not willingly pronounce these words in their hearing, and give them the occasion to profane them.
    Ralph Waldo Emerson (1803–1882)

    Scientific method is the way to truth, but it affords, even in
    principle, no unique definition of truth. Any so-called pragmatic
    definition of truth is doomed to failure equally.
    Willard Van Orman Quine (b. 1908)

    Perhaps the best definition of progress would be the continuing efforts of men and women to narrow the gap between the convenience of the powers that be and the unwritten charter.
    Nadine Gordimer (b. 1923)