Dirichlet's Theorem On Arithmetic Progressions

Dirichlet's Theorem On Arithmetic Progressions

In number theory, Dirichlet's theorem, also called the Dirichlet prime number theorem, states that for any two positive coprime integers a and d, there are infinitely many primes of the form a + nd, where n ≥ 0. In other words, there are infinitely many primes which are congruent to a modulo d. The numbers of the form a + nd form an arithmetic progression

and Dirichlet's theorem states that this sequence contains infinitely many prime numbers. The theorem extends Euclid's theorem that there are infinitely many prime numbers. Stronger forms of Dirichlet's theorem state that, for any arithmetic progression, the sum of the reciprocals of the prime numbers in the progression diverges, and that different arithmetic progressions with the same modulus have approximately the same proportions of primes. Equivalently, the primes are evenly distributed (asymptotically) among each congruence class modulo d.

Note that Dirichlet's theorem does not require the prime numbers in an arithmetic sequence to be consecutive. It is also known that there exist arbitrarily long finite arithmetic progressions consisting only of primes, but this is a different result, known as the Green–Tao theorem.

Read more about Dirichlet's Theorem On Arithmetic Progressions:  Examples, Distribution, History, Generalizations

Famous quotes containing the words theorem and/or arithmetic:

    To insure the adoration of a theorem for any length of time, faith is not enough, a police force is needed as well.
    Albert Camus (1913–1960)

    Under the dominion of an idea, which possesses the minds of multitudes, as civil freedom, or the religious sentiment, the power of persons are no longer subjects of calculation. A nation of men unanimously bent on freedom, or conquest, can easily confound the arithmetic of statists, and achieve extravagant actions, out of all proportion to their means; as, the Greeks, the Saracens, the Swiss, the Americans, and the French have done.
    Ralph Waldo Emerson (1803–1882)