Proof
Let and .
From summation by parts, we have that .
Since is bounded by M and, the first of these terms approaches zero, as nāā.
On the other hand, since the sequence is decreasing, is positive for all k, so . That is, the magnitude of the partial sum of Bn, times a factor, is less than the upper bound of the partial sum Bn (a value M) times that same factor.
But, which is a telescoping series that equals and therefore approaches as nāā. Thus, converges.
In turn, converges as well by the Direct Comparison test. The series converges, as well, by the Absolute convergence test. Hence converges.
Read more about this topic: Dirichlet's Test
Famous quotes containing the word proof:
“There are some persons in this world, who, unable to give better proof of being wise, take a strange delight in showing what they think they have sagaciously read in mankind by uncharitable suspicions of them.”
—Herman Melville (18191891)
“If we view our children as stupid, naughty, disturbed, or guilty of their misdeeds, they will learn to behold themselves as foolish, faulty, or shameful specimens of humanity. They will regard us as judges from whom they wish to hide, and they will interpret everything we say as further proof of their unworthiness. If we view them as innocent, or at least merely ignorant, they will gain understanding from their experiences, and they will continue to regard us as wise partners.”
—Polly Berrien Berends (20th century)
“If any proof were needed of the progress of the cause for which I have worked, it is here tonight. The presence on the stage of these college women, and in the audience of all those college girls who will some day be the nations greatest strength, will tell their own story to the world.”
—Susan B. Anthony (18201906)