Dirichlet Problem - Methods of Solution

Methods of Solution

For bounded domains, the Dirichlet problem can be solved using the Perron method, which relies on the maximum principle for subharmonic functions. This approach is described in many text books. It is not well-suited to describing smoothness of solutions when the boundary is smooth. Another classical Hilbert space approach through Sobolev spaces does yield such information. The solution of the Dirichlet problem using Sobolev spaces for planar domains can be used to prove the smooth version of the Riemann mapping theorem. Bell (1992) has outlined a different approach for establishing the smooth Riemann mapping theorem, based on the reproducing kernels of Szegő and Bergman, and in turn used it to solve the Dirichlet problem. The classical methods of potential theory allow the Dirichlet problem to be solved directly in terms of integral operators, for which the standard theory of compact and Fredholm operators is applicable. The same methods work equally for the Neumann problem.

Read more about this topic:  Dirichlet Problem

Famous quotes containing the words methods of, methods and/or solution:

    If men got pregnant, there would be safe, reliable methods of birth control. They’d be inexpensive, too.
    Anna Quindlen (b. 1952)

    Commerce is unexpectedly confident and serene, alert, adventurous, and unwearied. It is very natural in its methods withal, far more so than many fantastic enterprises and sentimental experiments, and hence its singular success.
    Henry David Thoreau (1817–1862)

    All the followers of science are fully persuaded that the processes of investigation, if only pushed far enough, will give one certain solution to each question to which they can be applied.... This great law is embodied in the conception of truth and reality. The opinion which is fated to be ultimately agreed to by all who investigate is what we mean by the truth, and the object represented in this opinion is the real.
    Charles Sanders Peirce (1839–1914)