Dirichlet Density - Definition

Definition

If A is a subset of the prime numbers, the Dirichlet density of A is the limit

if the limit exists. This expression is usually the order of the "pole" of

at s = 1, (though in general it is not really a pole as it has non-integral order), at least if the function on the right is a holomorphic function times a (real) power of s−1 near s = 1. For example, if A is the set of all primes, the function on the right is the Riemann zeta function which has a pole of order 1 at 0, so the set of all primes has Dirichlet density 1.

More generally, one can define the Dirichlet density of a sequence of primes (or prime powers), possibly with repetitions, in the same way.

Read more about this topic:  Dirichlet Density

Famous quotes containing the word definition:

    It’s a rare parent who can see his or her child clearly and objectively. At a school board meeting I attended . . . the only definition of a gifted child on which everyone in the audience could agree was “mine.”
    Jane Adams (20th century)

    ... if, as women, we accept a philosophy of history that asserts that women are by definition assimilated into the male universal, that we can understand our past through a male lens—if we are unaware that women even have a history—we live our lives similarly unanchored, drifting in response to a veering wind of myth and bias.
    Adrienne Rich (b. 1929)

    It is very hard to give a just definition of love. The most we can say of it is this: that in the soul, it is a desire to rule; in the spirit, it is a sympathy; and in the body, it is but a hidden and subtle desire to possess—after many mysteries—what one loves.
    François, Duc De La Rochefoucauld (1613–1680)