Dirichlet's Theorem For 1-Dimensional Fourier Series
We state Dirichlet's theorem assuming f is a periodic function of period 2π with Fourier series expansion where
The analogous statement holds irrespective of what the period of f is, or which version of the Fourier expansion is chosen (see Fourier series).
- Dirichlet's theorem: If f satisfies Dirichlet conditions, then for all x, we have that the series obtained by plugging x into the Fourier series is convergent, and is given by
-
- ,
- where the notation
- denotes the right/left limits of f.
A function satisfying Dirichlet's conditions must have right and left limits at each point of discontinuity, or else the function would need to oscillate at that point, violating the condition on maxima/minima. Note that at any point where f is continuous,
- .
Thus Dirichlet's theorem says in particular that the Fourier series for f converges and is equal to f wherever f is continuous.
Read more about this topic: Dirichlet Conditions
Famous quotes containing the words theorem and/or series:
“To insure the adoration of a theorem for any length of time, faith is not enough, a police force is needed as well.”
—Albert Camus (19131960)
“If the technology cannot shoulder the entire burden of strategic change, it nevertheless can set into motion a series of dynamics that present an important challenge to imperative control and the industrial division of labor. The more blurred the distinction between what workers know and what managers know, the more fragile and pointless any traditional relationships of domination and subordination between them will become.”
—Shoshana Zuboff (b. 1951)