Directional Statistics - Circular and Higher Dimensional Distributions

Circular and Higher Dimensional Distributions

Any probability density function on the line can be "wrapped" around the circumference of a circle of unit radius. That is, the pdf of the wrapped variable


\theta = x_w=x \mod 2\pi\ \ \in (-\pi,\pi]

is


p_w(\theta)=\sum_{k=-\infty}^{\infty}{p(\theta+2\pi k)}.

This concept can be extended to the multivariate context by an extension of the simple sum to a number of sums that cover all dimensions in the feature space:


p_w(\vec\theta)=\sum_{k_1=-\infty}^{\infty}\cdots \sum_{k_F=-\infty}^\infty{p(\vec\theta+2\pi k_1\mathbf{e}_1+\dots+2\pi k_F\mathbf{e}_F)}

where is the th Euclidean basis vector.

Read more about this topic:  Directional Statistics

Famous quotes containing the words circular, higher and/or dimensional:

    Loving a baby is a circular business, a kind of feedback loop. The more you give the more you get and the more you get the more you feel like giving.
    Penelope Leach (20th century)

    The fancy that extraterrestrial life is by definition of a higher order than our own is one that soothes all children, and many writers.
    Joan Didion (b. 1934)

    I don’t see black people as victims even though we are exploited. Victims are flat, one- dimensional characters, someone rolled over by a steamroller so you have a cardboard person. We are far more resilient and more rounded than that. I will go on showing there’s more to us than our being victimized. Victims are dead.
    Kristin Hunter (b. 1931)