Algebraic Structure
Let G and H be groups, let P = G × H, and consider the following two subsets of P:
-
- G' = { (g, 1) : g ∈ G } and H' = { (1, h) : h ∈ H }
Both of these are in fact subgroups of P, the first being isomorphic to G, and the second being isomorphic to H. If we identify these with G and H, respectively, then we can think of the direct product P as containing the original groups G and H as subgroups.
These subgroups of P have the following three important properties: (Saying again that we identify G' and H' with G and H, respectively.)
- The intersection G ∩ H is trivial.
- Every element of P can be expressed as the product of an element of G and an element of H.
- Every element of G commutes with every element of H.
Together, these three properties completely determine the algebraic structure of the direct product P. That is, if P is any group having subgroups G and H that satisfy the properties above, then P is necessarily isomorphic to the direct product of G and H. In this situation, P is sometimes referred to as the internal direct product of its subgroups G and H.
In some contexts, the third property above is replaced by the following:
- 3'. Both G and H are normal in P.
This property is equivalent to property 3, since the elements of two normal subgroups with trivial intersection necessarily commute, a fact which can be deduced by considering the commutator of any g in G, h in H.
Read more about this topic: Direct Product Of Groups
Famous quotes containing the words algebraic and/or structure:
“I have no scheme about it,no designs on men at all; and, if I had, my mode would be to tempt them with the fruit, and not with the manure. To what end do I lead a simple life at all, pray? That I may teach others to simplify their lives?and so all our lives be simplified merely, like an algebraic formula? Or not, rather, that I may make use of the ground I have cleared, to live more worthily and profitably?”
—Henry David Thoreau (18171862)
“Agnosticism is a perfectly respectable and tenable philosophical position; it is not dogmatic and makes no pronouncements about the ultimate truths of the universe. It remains open to evidence and persuasion; lacking faith, it nevertheless does not deride faith. Atheism, on the other hand, is as unyielding and dogmatic about religious belief as true believers are about heathens. It tries to use reason to demolish a structure that is not built upon reason.”
—Sydney J. Harris (19171986)