Multiple Shooting
A direct multiple shooting method partitions the interval by introducing additional grid points
- .
The method starts by guessing somehow the values of y at all grid points tk with 0 ≤ k ≤ N − 1. Denote these guesses by yk. Let y(t; tk, yk) denote the solution emanating from the kth grid point, that is, the solution of the initial value problem
All these solutions can be pieced together to form a continuous trajectory if the values y match at the grid points. Thus, solutions of the boundary value problem correspond to solutions of the following system of N equations:
The central N−2 equations are the matching conditions, and the first and last equations are the conditions y(ta) = ya and y(tb) = yb from the boundary value problem. The multiple shooting method solves the boundary value problem by solving this system of equations. Typically, a modification of the Newton's method is used for the latter task.
Read more about this topic: Direct Multiple Shooting Method
Famous quotes containing the words multiple and/or shooting:
“Combining paid employment with marriage and motherhood creates safeguards for emotional well-being. Nothing is certain in life, but generally the chances of happiness are greater if one has multiple areas of interest and involvement. To juggle is to diminish the risk of depression, anxiety, and unhappiness.”
—Faye J. Crosby (20th century)
“One ... aspect of the case for World War II is that while it was still a shooting affair it taught us survivors a great deal about daily living which is valuable to us now that it is, ethically at least, a question of cold weapons and hot words.”
—M.F.K. Fisher (19081992)