Dirac Large Numbers Hypothesis
The Dirac large numbers hypothesis (LNH) is an observation made by Paul Dirac in 1937 relating ratios of size scales in the Universe to that of force scales. The ratios constitute very large, dimensionless numbers: some 40 orders of magnitude in the present cosmological epoch. According to Dirac's hypothesis, the apparent equivalence of these ratios might not be a mere coincidence but instead could imply a cosmology with these unusual features:
- The strength of gravity, as represented by the gravitational constant, is inversely proportional to the age of the universe:
- The mass of the universe is proportional to the square of the universe's age: .
Neither of these two features has gained acceptance in mainstream physics and, though some proponents of non-standard cosmologies refer to Dirac's cosmology as a foundational basis for their own ideas and studies, some physicists harshly dismiss the large numbers in LNH as mere coincidences more suited to numerology than physics. A coincidence, however, may be defined optimally as 'an event that provides support for an alternative to a currently favoured causal theory, but not necessarily enough support to accept that alternative in light of its low prior probability.' Research into LNH, or the large number of coincidences that underpin it, appears to have gained new impetus from failures in standard cosmology to account for anomalies such as the recent discovery that the universe might be expanding at an accelerated rate.
Read more about Dirac Large Numbers Hypothesis: Background, Dirac's Interpretation of The Large Number Coincidences, Later Developments and Interpretations
Famous quotes containing the words large, numbers and/or hypothesis:
“Nowadays almost all mans improvements, so called, as the building of houses and the cutting down of the forest and of all large trees, simply deform the landscape, and make it more and more tame and cheap.”
—Henry David Thoreau (18171862)
“And when all bodies meet
In Lethe to be drowned,
Then only numbers sweet
With endless life are crowned.”
—Robert Herrick (15911674)
“The hypothesis I wish to advance is that ... the language of morality is in ... grave disorder.... What we possess, if this is true, are the fragments of a conceptual scheme, parts of which now lack those contexts from which their significance derived. We possess indeed simulacra of morality, we continue to use many of the key expressions. But we havevery largely if not entirelylost our comprehension, both theoretical and practical, of morality.”
—Alasdair Chalmers MacIntyre (b. 1929)