Dirac Equation in The Algebra of Physical Space - Relation With The Standard Form

Relation With The Standard Form

The spinor can be written in a null basis as


\Psi = \psi_{11} P_3 - \psi_{12} P_3 \mathbf{e}_1 + \psi_{21} \mathbf{e}_1 P_3 + \psi_{22} \bar{P}_3,

such that the representation of the spinor in terms of the Pauli matrices is


\Psi \rightarrow \begin{pmatrix} \psi_{11} & \psi_{12} \\ \psi_{21} & \psi_{22}
\end{pmatrix}
 \bar{\Psi}^\dagger \rightarrow \begin{pmatrix} \psi_{22}^* & -\psi_{21}^* \\ -\psi_{12}^* & \psi_{11}^*
\end{pmatrix}

The standard form of the Dirac equation can be recovered by decomposing the spinor in its right and left-handed spinor components, which are extracted with the help of the projector

such that

 \Psi_L = \bar{\Psi}^\dagger P_3
 \Psi_R = \Psi P_3^{ }

with the following matrix representation

 \Psi_L \rightarrow \begin{pmatrix} \psi_{22}^* & 0 \\ -\psi_{12}^* & 0
\end{pmatrix}
 \Psi_R \rightarrow \begin{pmatrix} \psi_{11} & 0 \\ \psi_{21} & 0
\end{pmatrix}

The Dirac equation can be also written as

Without electromagnetic interaction, the following equation is obtained from the two equivalent forms of the Dirac equation


\begin{pmatrix}
0 & i \bar{\partial}\\
i \partial & 0
\end{pmatrix}
\begin{pmatrix} \bar{\Psi}^\dagger P_3 \\ \Psi P_3
\end{pmatrix}
= m
\begin{pmatrix} \bar{\Psi}^\dagger P_3 \\ \Psi P_3
\end{pmatrix}

so that


\begin{pmatrix}
0 & i \partial_0 + i\nabla \\
i \partial_0 - i \nabla & 0
\end{pmatrix}
\begin{pmatrix} \Psi_L \\ \Psi_R
\end{pmatrix}
= m
\begin{pmatrix} \Psi_L \\ \Psi_R
\end{pmatrix}

or in matrix representation


i \left(
\begin{pmatrix}
0 & 1 \\
1 & 0
\end{pmatrix} \partial_0 +
\begin{pmatrix}
0 & \sigma \\
-\sigma & 0
\end{pmatrix} \cdot \nabla
\right)
\begin{pmatrix} \psi_L \\ \psi_R
\end{pmatrix}
= m
\begin{pmatrix} \psi_L \\ \psi_R
\end{pmatrix},

where the second column of the right and left spinors can be dropped by defining the single column chiral spinors as

 \psi_L \rightarrow \begin{pmatrix} \psi_{22}^* \\ -\psi_{12}^*
\end{pmatrix}
 \psi_R \rightarrow \begin{pmatrix} \psi_{11} \\ \psi_{21}
\end{pmatrix}

The standard relativistic covariant form of the Dirac equation in the Weyl representation can be easily identified 
i \gamma^{\mu} \partial_{\mu} \psi = m \psi,
such that

 \psi_= \begin{pmatrix} \psi_{22}^* \\ -\psi_{12}^* \\ \psi_{11} \\ \psi_{21}
\end{pmatrix}

Given two spinors and in APS and their respective spinors in the standard form as and, one can verify the following identity


\phi^\dagger \gamma^0 \psi = \langle \bar{\Phi}\Psi + (\bar{\Psi}\Phi)^\dagger \rangle_S
,

such that


\psi^\dagger \gamma^0 \psi = 2 \langle \bar{\Psi}\Psi \rangle_{S R}

Read more about this topic:  Dirac Equation In The Algebra Of Physical Space

Famous quotes containing the words relation with, relation, standard and/or form:

    There is undoubtedly something religious about it: everyone believes that they are special, that they are chosen, that they have a special relation with fate. Here is the test: you turn over card after card to see in which way that is true. If you can defy the odds, you may be saved. And when you are cleaned out, the last penny gone, you are enlightened at last, free perhaps, exhilarated like an ascetic by the falling away of the material world.
    Andrei Codrescu (b. 1947)

    Skepticism is unbelief in cause and effect. A man does not see, that, as he eats, so he thinks: as he deals, so he is, and so he appears; he does not see that his son is the son of his thoughts and of his actions; that fortunes are not exceptions but fruits; that relation and connection are not somewhere and sometimes, but everywhere and always; no miscellany, no exemption, no anomaly,—but method, and an even web; and what comes out, that was put in.
    Ralph Waldo Emerson (1803–1882)

    [The Declaration of Independence] meant to set up a standard maxim for free society, which should be familiar to all, and revered by all; constantly looked to, constantly labored for, and even though never perfectly attained, constantly approximated, and thereby constantly spreading and deepening its influence, and augmenting the happiness and value of life to all people of all colors everywhere.
    Abraham Lincoln (1809–1865)

    The glance is natural magic. The mysterious communication established across a house between two entire strangers, moves all the springs of wonder. The communication by the glance is in the greatest part not subject to the control of the will. It is the bodily symbol of identity with nature. We look into the eyes to know if this other form is another self, and the eyes will not lie, but make a faithful confession what inhabitant is there.
    Ralph Waldo Emerson (1803–1882)