Dimension Function - Motivation: s-dimensional Hausdorff Measure

Motivation: s-dimensional Hausdorff Measure

Consider a metric space (X, d) and a subset E of X. Given a number s ≥ 0, the s-dimensional Hausdorff measure of E, denoted μs(E), is defined by

where

μδs(E) can be thought of as an approximation to the "true" s-dimensional area/volume of E given by calculating the minimal s-dimensional area/volume of a covering of E by sets of diameter at most δ.

As a function of increasing s, μs(E) is non-increasing. In fact, for all values of s, except possibly one, Hs(E) is either 0 or +∞; this exceptional value is called the Hausdorff dimension of E, here denoted dimH(E). Intuitively speaking, μs(E) = +∞ for s < dimH(E) for the same reason as the 1-dimensional linear length of a 2-dimensional disc in the Euclidean plane is +∞; likewise, μs(E) = 0 for s > dimH(E) for the same reason as the 3-dimensional volume of a disc in the Euclidean plane is zero.

The idea of a dimension function is to use different functions of diameter than just diam(C)s for some s, and to look for the same property of the Hausdorff measure being finite and non-zero.

Read more about this topic:  Dimension Function

Famous quotes containing the word measure:

    Like all writers, he measured the achievements of others by what they had accomplished, asking of them that they measure him by what he envisaged or planned.
    Jorge Luis Borges (1899–1986)