Differentiation of Trigonometric Functions

The differentiation of trigonometric functions is the mathematical process of finding the rate at which a trigonometric function changes with respect to a variable--the derivative of the trigonometric function. Commonplace trigonometric functions include sin(x), cos(x) and tan(x). For example, in differentiating f(x) = sin(x), one is calculating a function f ′(x) which computes the rate of change of sin(x) at a particular point a. The value of the rate of change at a is thus given by f ′(a). Knowledge of differentiation from first principles is required, along with competence in the use of trigonometric identities and limits. All functions involve the arbitrary variable x, with all differentiation performed with respect to x.

It turns out that once one knows the deriatives of sin(x) and cos(x), one can easily compute the derivatives of the other circular trigonometric functions because they can all be expressed in terms of sine or cosine; the quotient rule is then implemented to differentiate this expression. Proofs of the derivatives of sin(x) and cos(x) are given in the proofs section; the results are quoted in order to give proofs of the derivatives of the other circular trigonometric functions. Finding the derivatives of the inverse trigonometric functions involves using implicit differentiation and the derivatives of regular trigonometric functions also given in the proofs section.

Read more about Differentiation Of Trigonometric Functions:  Derivatives of Trigonometric Functions and Their Inverses, Proofs of Derivatives of Inverse Trigonometric Functions

Famous quotes containing the word functions:

    Adolescents, for all their self-involvement, are emerging from the self-centeredness of childhood. Their perception of other people has more depth. They are better equipped at appreciating others’ reasons for action, or the basis of others’ emotions. But this maturity functions in a piecemeal fashion. They show more understanding of their friends, but not of their teachers.
    Terri Apter (20th century)