Differentiation of Trigonometric Functions

The differentiation of trigonometric functions is the mathematical process of finding the rate at which a trigonometric function changes with respect to a variable--the derivative of the trigonometric function. Commonplace trigonometric functions include sin(x), cos(x) and tan(x). For example, in differentiating f(x) = sin(x), one is calculating a function f ′(x) which computes the rate of change of sin(x) at a particular point a. The value of the rate of change at a is thus given by f ′(a). Knowledge of differentiation from first principles is required, along with competence in the use of trigonometric identities and limits. All functions involve the arbitrary variable x, with all differentiation performed with respect to x.

It turns out that once one knows the deriatives of sin(x) and cos(x), one can easily compute the derivatives of the other circular trigonometric functions because they can all be expressed in terms of sine or cosine; the quotient rule is then implemented to differentiate this expression. Proofs of the derivatives of sin(x) and cos(x) are given in the proofs section; the results are quoted in order to give proofs of the derivatives of the other circular trigonometric functions. Finding the derivatives of the inverse trigonometric functions involves using implicit differentiation and the derivatives of regular trigonometric functions also given in the proofs section.

Read more about Differentiation Of Trigonometric Functions:  Derivatives of Trigonometric Functions and Their Inverses, Proofs of Derivatives of Inverse Trigonometric Functions

Famous quotes containing the word functions:

    Mark the babe
    Not long accustomed to this breathing world;
    One that hath barely learned to shape a smile,
    Though yet irrational of soul, to grasp
    With tiny finger—to let fall a tear;
    And, as the heavy cloud of sleep dissolves,
    To stretch his limbs, bemocking, as might seem,
    The outward functions of intelligent man.
    William Wordsworth (1770–1850)