Differential (infinitesimal) - Nonstandard Analysis

Nonstandard Analysis

The final approach to infinitesimals again involves extending the real numbers, but in a less drastic way. In the nonstandard analysis approach there are no nilpotent infinitesimals, only invertible ones, which may be viewed as the reciprocals of infinitely large numbers. Such extensions of the real numbers may be constructed explicitly using equivalence classes of sequences of real numbers, so that, for example, the sequence (1, 1/2, 1/3, …, 1/n, …) represents an infinitesimal. The first-order logic of this new set of hyperreal numbers is the same as the logic for the usual real numbers, but the completeness axiom (which involves second-order logic) does not hold. Nevertheless, this suffices to develop an elementary and quite intuitive approach to calculus using infinitesimals, see transfer principle.

Read more about this topic:  Differential (infinitesimal)

Famous quotes containing the word analysis:

    Whatever else American thinkers do, they psychologize, often brilliantly. The trouble is that psychology only takes us so far. The new interest in families has its merits, but it will have done us all a disservice if it turns us away from public issues to private matters. A vision of things that has no room for the inner life is bankrupt, but a psychology without social analysis or politics is both powerless and very lonely.
    Joseph Featherstone (20th century)