Dietary Fiber - Short-chain Fatty Acids

Short-chain Fatty Acids

When soluble fiber is fermented, short-chain fatty acids (SCFA) are produced. SCFAs are involved in numerous physiological processes promoting health, including:

  • stabilize blood glucose levels by acting on pancreatic insulin release and liver control of glycogen breakdown
  • stimulate gene expression of glucose transporters in the intestinal mucosa, regulating glucose absorption
  • provide nourishment of colonocytes, particularly by the SCFA butyrate
  • suppress cholesterol synthesis by the liver and reduce blood levels of LDL cholesterol and triglycerides responsible for atherosclerosis
  • lower colonic pH (i.e., raises the acidity level in the colon) which protects the lining from formation of colonic polyps and increases absorption of dietary minerals
  • stimulate production of T helper cells, antibodies, leukocytes, cytokines, and lymph mechanisms having crucial roles in immune protection
  • improve barrier properties of the colonic mucosal layer, inhibiting inflammatory and adhesion irritants, contributing to immune functions

SCFAs that are absorbed by the colonic mucosa pass through the colonic wall into the portal circulation (supplying the liver), and the liver transports them into the general circulatory system.

Overall, SCFAs affect major regulatory systems, such as blood glucose and lipid levels, the colonic environment, and intestinal immune functions.

The major SCFAs in humans are butyrate, propionate, and acetate, where butyrate is the major energy source for colonocytes, propionate is destined for uptake by the liver, and acetate enters the peripheral circulation to be metabolized by peripheral tissues.

Read more about this topic:  Dietary Fiber

Famous quotes containing the word acids:

    The new American finds his challenge and his love in the traffic-choked streets, skies nested in smog, choking with the acids of industry, the screech of rubber and houses leashed in against one another while the townlets wither a time and die.
    John Steinbeck (1902–1968)