Proof
Let f: N→N be the function defined by:
- f(#(θ)) = #(θ(#(θ))
for each T-formula θ in one free variable, and f(n) = 0 otherwise. The function f is computable, so there is a formula δ representing f in T. Thus for each formula θ, T proves
- (∀y) ,
which is to say
- (∀y) .
Now define the formula β(z) as:
- β(z) = (∀y) ,
then
- β(#(θ)) ⇔ (∀y) ,
which is to say
- β(#(θ)) ⇔ ψ(#(θ(#(θ))))
Let φ be the sentence β(#(β)). Then we can prove in T that:
- (*) φ ⇔ (∀y) ⇔ (∀y) .
Working in T, analyze two cases:
1. Assuming φ holds, substitute #(β(#(β)) for y in the rightmost formula in (*), and obtain:
- (#(β(#(β)) = #(β(#(β))) → ψ(#(β(#(β))),
Since φ = β(#(β)), it follows that ψ(#(φ)) holds.
2. Conversely, assume that ψ(#(β(#(β)))) holds. Then the final formula in (*) must be true, and φ is also true.
Thus φ ↔ ψ(#(φ)) is provable in T, as desired.
Read more about this topic: Diagonal Lemma
Famous quotes containing the word proof:
“If we view our children as stupid, naughty, disturbed, or guilty of their misdeeds, they will learn to behold themselves as foolish, faulty, or shameful specimens of humanity. They will regard us as judges from whom they wish to hide, and they will interpret everything we say as further proof of their unworthiness. If we view them as innocent, or at least merely ignorant, they will gain understanding from their experiences, and they will continue to regard us as wise partners.”
—Polly Berrien Berends (20th century)
“Right and proof are two crutches for everything bent and crooked that limps along.”
—Franz Grillparzer (17911872)
“The source of Pyrrhonism comes from failing to distinguish between a demonstration, a proof and a probability. A demonstration supposes that the contradictory idea is impossible; a proof of fact is where all the reasons lead to belief, without there being any pretext for doubt; a probability is where the reasons for belief are stronger than those for doubting.”
—Andrew Michael Ramsay (16861743)