Diagonal Lemma - History

History

The diagonal lemma is closely related to Kleene's recursion theorem in computability theory, and their respective proofs are similar.

The lemma is called "diagonal" because it bears some resemblance to Cantor's diagonal argument. The terms "diagonal lemma" or "fixed point" do not appear in Kurt Gödel's epochal 1931 article, or in Tarski (1936). Carnap (1934) was the first to prove that for any formula ψ in a theory T satisfying certain conditions, there exists a formula φ such that φ ↔ ψ(#(φ)) is provable in T. Carnap's work was phrased in alternate language, as the concept of computable functions was not yet developed in 1934. Mendelson (1997, p. 204) believes that Carnap was the first to state that something like the diagonal lemma was implicit in Gödel's reasoning. Gödel was aware of Carnap's work by 1937.

Read more about this topic:  Diagonal Lemma

Famous quotes containing the word history:

    The principal office of history I take to be this: to prevent virtuous actions from being forgotten, and that evil words and deeds should fear an infamous reputation with posterity.
    Tacitus (c. 55–c. 120)

    In history the great moment is, when the savage is just ceasing to be a savage, with all his hairy Pelasgic strength directed on his opening sense of beauty;—and you have Pericles and Phidias,—and not yet passed over into the Corinthian civility. Everything good in nature and in the world is in that moment of transition, when the swarthy juices still flow plentifully from nature, but their astrigency or acridity is got out by ethics and humanity.
    Ralph Waldo Emerson (1803–1882)

    If usually the “present age” is no very long time, still, at our pleasure, or in the service of some such unity of meaning as the history of civilization, or the study of geology, may suggest, we may conceive the present as extending over many centuries, or over a hundred thousand years.
    Josiah Royce (1855–1916)