Derived Unique Key Per Transaction - Practical Matters (KSN Scheme)

Practical Matters (KSN Scheme)

In practical applications, one would have several BDKs on record, possibly for different customers, or to contain the scope of key compromise. When processing transactions, it is important for the receiver to know which BDK was used to initialize the originating device. To achieve this, the 80-bit KSN is structured into parts: as Key Set ID, a TRSM ID, and the transaction counter. The algorithm specifies that the transaction counter is 21-bits, but treats the remaining 59 bits opaquely (the algorithm only specifies that unused bits be 0-padded to a nibble boundary, and then 'f' padded to the 80-bit boundary). Because of this, the entity managing the creation of the DUKPT devices (typically a merchant acquirer) is free to subdivide the 59 bits according to their preference.

The industry practice is to designate the partitioning as a series of three digits, indicating the number of hex digits used in each part: the Key Set ID, the TRSM ID, and the transaction counter. A common choice is '6-5-5', meaning that the first 6 hex digits of the KSN indicate the Key Set ID (i.e., which BDK is to be used), the next 5 are the TRSM ID (i.e. a device serial number within the range being initialized via a common BDK), and the last 5 are the transaction counter.

This notational scheme is not strictly accurate, because the transaction counter is 21 bits, which is not an even multiple of 4 (the number of bits in a hex digit). Consequently, the transaction counter actually consumes one bit of the field that is the TRSM ID (in this example that means that the TRSM ID field can accommodate 2(5*4-1) devices, instead of 2(5*4), or about half a million).

Also, it is common practice in the industry to use only 64-bits of the KSN (probably for reasons pertinent to legacy systems, and DES encryption), which would imply that the full KSN is padded to the left with four ‘f’ hex digits. The remaining 4 hex digits (16-bits) are available, nonetheless, to systems which can accommodate them.

The 6-5-5 scheme mentioned above would permit about 16 million BDKs, 500,000 devices per BDK, and 1 million transactions per device.

Cryptography
  • History of cryptography
  • Cryptanalysis
  • Cryptography portal
  • Outline of cryptography
  • Symmetric-key algorithm
  • Block cipher
  • Stream cipher
  • Public-key cryptography
  • Cryptographic hash function
  • Message authentication code
  • Random numbers
  • Steganography

Read more about this topic:  Derived Unique Key Per Transaction

Famous quotes containing the words practical and/or matters:

    Tried by a New England eye, or the more practical wisdom of modern times, they are the oracles of a race already in its dotage; but held up to the sky, which is the only impartial and incorruptible ordeal, they are of a piece with its depth and serenity, and I am assured that they will have a place and significance as long as there is a sky to test them by.
    Henry David Thoreau (1817–1862)

    One cannot demand of a scholar that he show himself a scholar everywhere in society, but the whole tenor of his behavior must none the less betray the thinker, he must always be instructive, his way of judging a thing must even in the smallest matters be such that people can see what it will amount to when, quietly and self-collected, he puts this power to scholarly use.
    —G.C. (Georg Christoph)