Derived Set (mathematics) - Topology in Terms of Derived Sets

Topology in Terms of Derived Sets

Because homeomorphisms can be described entirely in terms of derived sets, derived sets have been used as the primitive notion in topology. A set of points X can be equipped with an operator * mapping subsets of X to subsets of X, such that for any set S and any point a:

Note that given 5, 3 is equivalent to 3' below, and that 4 and 5 together are equivalent to 4' below, so we have the following equivalent axioms:

  • 3'.
  • 4'.

Calling a set S closed if will define a topology on the space in which * is the derived set operator, that is, . If we also require that the derived set of a set consisting of a single element be empty, the resulting space will be a T1 space. In fact, 2 and 3' can fail in a space that is not T1.

Read more about this topic:  Derived Set (mathematics)

Famous quotes containing the words terms, derived and/or sets:

    ... the constructive power of an image is not measured in terms of its truth, but of the love it inspires.
    Sarah Patton Boyle, U.S. civil rights activist and author. The Desegregated Heart, part 1, ch. 15 (1962)

    There is, it seems to us,
    At best, only a limited value
    In the knowledge derived from experience....
    —T.S. (Thomas Stearns)

    The vain man does not wish so much to be prominent as to feel himself prominent; he therefore disdains none of the expedients for self-deception and self-outwitting. It is not the opinion of others that he sets his heart on, but his opinion of their opinion.
    Friedrich Nietzsche (1844–1900)