Density On A Manifold - Integration

Integration

Densities play a significant role in the theory of integration on manifolds. Indeed, the definition of a density is motivated by how a measure dx changes under a change of coordinates (Folland 1999, Section 11.4, pp. 361-362).

Given a 1-density ƒ supported in a coordinate chart Uα, the integral is defined by

where the latter integral is with respect to the Lebesgue measure on Rn. The transformation law for 1-densities together with the Jacobian change of variables ensures compatibility on the overlaps of different coordinate charts, and so the integral of a general compactly supported 1-density can be defined by a partition of unity argument. Thus 1-densities are a generalization of the notion of a volume form that does not necessarily require the manifold to be oriented or even orientable. One can more generally develop a general theory of Radon measures as distributional sections of using the Riesz representation theorem.

The set of 1/p-densities such that is a normed linear space whose completion is called the intrinsic Lp space of M.

Read more about this topic:  Density On A Manifold

Famous quotes containing the word integration:

    The more specific idea of evolution now reached is—a change from an indefinite, incoherent homogeneity to a definite, coherent heterogeneity, accompanying the dissipation of motion and integration of matter.
    Herbert Spencer (1820–1903)

    Look back, to slavery, to suffrage, to integration and one thing is clear. Fashions in bigotry come and go. The right thing lasts.
    Anna Quindlen (b. 1952)

    The more specific idea of evolution now reached is—a change from an indefinite, incoherent homogeneity to a definite, coherent heterogeneity, accompanying the dissipation of motion and integration of matter.
    Herbert Spencer (1820–1903)