Related Polyhedra and Tilings
The deltoidal icositetrahedron is one of a family of duals to the uniform polyhedra related to the cube and regular octahedron.
Symmetry: | + | ||||||||
{4,3} | t0,1{4,3} | t1{4,3} | t0,1{3,4} | {3,4} | t0,2{4,3} | t0,1,2{4,3} | s{4,3} | h{4,3} | h1,2{4,3} |
---|---|---|---|---|---|---|---|---|---|
Duals to uniform polyhedra | |||||||||
{3,4} | f0,1{4,3} | f1{4,3} | f0,1{3,4} | {4,3} | f0,2{4,3} | f0,1,2{4,3} | ds{4,3} | hf{4,3} | hf1,2{4,3} |
This polyhedron is topologically related as a part of sequence of deltoidal polyhedra with face figure (V3.4.n.4), and continues as tilings of the hyperbolic plane. These face-transitive figures have (*n32) reflectional symmetry.
Symmetry | Spherical | Planar | Hyperbolic... | |||||
---|---|---|---|---|---|---|---|---|
*232 D3h |
*332 Td |
*432 Oh |
*532 Ih |
*632 P6m |
*732 |
*832 ... |
*∞32 |
|
Symmetry order |
12 | 24 | 48 | 120 | ∞ | |||
Expanded figure |
3.4.2.4 |
3.4.3.4 |
3.4.4.4 |
3.4.5.4 |
3.4.6.4 |
3.4.7.4 |
3.4.8.4 |
3.4.∞.4 |
Coxeter Schläfli |
t0,2{2,3} |
t0,2{3,3} |
t0,2{4,3} |
t0,2{5,3} |
t0,2{6,3} |
t0,2{7,3} |
t0,2{8,3} |
t0,2{∞,3} |
Deltoidal figure | V3.4.2.4 |
V3.4.3.4 |
V3.4.4.4 |
V3.4.5.4 |
V3.4.6.4 |
V3.4.7.4 |
||
Coxeter |
Read more about this topic: Deltoidal Icositetrahedron
Famous quotes containing the word related:
“There is nothing but is related to us, nothing that does not interest us,kingdom, college, tree, horse, or iron show,the roots of all things are in man.”
—Ralph Waldo Emerson (18031882)