Dehn's Semi-Euclidean Geometry
The set of all pairs (x, y), where x and y are any (possibly infinite) elements of the field Ω(t), and with the usual metric
which takes values in Ω(t), gives a model of Euclidean geometry. The parallel postulate is true in this model, but if the deviation from the perpendicular is infinitesimal (meaning smaller than any positive rational number), the intersecting lines intersect at a point that is not in the finite part of the plane. Hence, if the model is restricted to the finite part of the plane (points (x,y) with x and y finite), a geometry is obtained in which the parallel postulate fails but the sum of the angles of a triangle is π. This is Dehn's semi-Euclidean geometry.
Read more about this topic: Dehn Planes
Famous quotes containing the word geometry:
“I am present at the sowing of the seed of the world. With a geometry of sunbeams, the soul lays the foundations of nature.”
—Ralph Waldo Emerson (18031882)