Degree Diameter Problem

In graph theory, the degree diameter problem is the problem of finding the largest possible graph G (in terms of the size of its vertex set V) of diameter k such that the largest degree of any of the vertices in G is at most d. The size of G is bounded above by the Moore bound; for 1 < k and 2 < d only the Petersen graph, the Hoffman-Singleton graph, and maybe a graph of diameter k = 2 and degree d = 57 attain the Moore bound. In general the largest degree-diameter graphs are much smaller in size than the Moore bound.

Read more about Degree Diameter Problem:  See Also

Famous quotes containing the words degree and/or problem:

    And all of us, with unveiled faces, seeing the glory of the Lord as though reflected in a mirror, are being transformed into the same image from one degree of glory to another...
    Bible: New Testament, 2 Corinthians 3:18.

    The family environment in which your children are growing up is different from that in which you grew up. The decisions our parents made and the strategies they used were developed in a different context from what we face today, even if the “content” of the problem is the same. It is a mistake to think that our own experience as children and adolescents will give us all we need to help our children. The rules of the game have changed.
    Lawrence Kutner (20th century)