Decomposition Method (constraint Satisfaction)
In constraint satisfaction, a decomposition method translates a constraint satisfaction problem into another constraint satisfaction problem that is binary and acyclic. Decomposition methods work by grouping variables into sets, and solving a subproblem for each set. These translations are done because solving binary acyclic problems is a tractable problem.
Each structural restriction defined a measure of complexity of solving the problem after conversion; this measure is called width. Fixing a maximal allowed width is a way for identifying a subclass of constraint satisfaction problems. Solving problems in this class is polynomial for most decompositions; if this holds for a decomposition, the class of fixed-width problems form a tractable subclass of constraint satisfaction problems.
Read more about Decomposition Method (constraint Satisfaction): Overview, Decomposition Methods, Decomposition Methods For Binary Problems, Decomposition Methods For Arbitrary Problems, Comparison, Solving From A Decomposition, Structural Restrictions, Online Resources
Famous quotes containing the word method:
“You that do search for every purling spring
Which from the ribs of old Parnassus flows,
And every flower, not sweet perhaps, which grows
Near thereabouts into your poesy wring;
You that do dictionarys method bring
Into your rhymes, running in rattling rows;”
—Sir Philip Sidney (15541586)