De Novo Protein Structure Prediction

De Novo Protein Structure Prediction

In computational biology, de novo protein structure prediction refers to an algorithmic process by which protein tertiary structure structure is predicted from its amino acid primary sequence. The problem itself has occupied leading scientists for decades while still remaining unsolved. According to Science, the problem remains one of the top 125 outstanding issues in modern science. At present, some of the most successful methods have a reasonable probability of predicting the folds of small, single-domain proteins within 1.5 angstroms over the entire structure.

De novo methods tend to require vast computational resources, and have thus only been carried out for relatively small proteins. De novo protein structure modeling is distinguished from Template-based modeling (TBM) by the fact that no solved homolog to the protein of interest is known, making efforts to predict protein structure from amino acid sequence exceedingly difficult. Prediction of protein structure de novo for larger proteins will require better algorithms and larger computational resources such as those afforded by either powerful supercomputers (such as Blue Gene or MDGRAPE-3) or distributed computing projects (such as Folding@home, Rosetta@home, the Human Proteome Folding Project, or Nutritious Rice for the World). Although computational barriers are vast, the potential benefits of structural genomics (by predicted or experimental methods) to fields such as medicine and drug design make de novo structure prediction an active research field.

Read more about De Novo Protein Structure Prediction:  Background, Amino Acid Sequence Determines Protein Tertiary Structure, Successful De Novo Modeling Requirements, Protein Predicting Strategies, Limitations of De Novo Prediction Methods, CASP

Famous quotes containing the words protein, structure and/or prediction:

    Firm-style bean curd insoles cushion feet, absorb perspiration and provide more protein than meat or fish innersoles of twice the weight. Tofu compresses with use, becoming more pungent and flavorful. May be removed when not in use to dry or marinate. Innersoles are ready to eat after 1,200 miles of wear. Each pair provides adult protein requirement for 2 meals. Insoles are sized large to allow for snacks. Recipe booklet included.
    Alfred Gingold, U.S. humorist. Items From Our Catalogue, “Tofu Innersoles,” Avon Books (1982)

    If rightly made, a boat would be a sort of amphibious animal, a creature of two elements, related by one half its structure to some swift and shapely fish, and by the other to some strong-winged and graceful bird.
    Henry David Thoreau (1817–1862)

    Recent studies that have investigated maternal satisfaction have found this to be a better prediction of mother-child interaction than work status alone. More important for the overall quality of interaction with their children than simply whether the mother works or not, these studies suggest, is how satisfied the mother is with her role as worker or homemaker. Satisfied women are consistently more warm, involved, playful, stimulating and effective with their children than unsatisfied women.
    Alison Clarke-Stewart (20th century)